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The MSL complex: X chromosome and beyond
Corey Laverty1,*, Jacopo Lucci1,2,* and Asifa Akhtar1
X chromosomal regulation is a process that presents

systematic problems of chromosome recognition and

coordinated gene regulation. In Drosophila males, the

ribonucleoprotein Male-Specific Lethal (MSL) complex plays

an important role in hyperactivation of the X-linked genes to

equalize gene dosage differences between the sexes. It

appears that X chromosome recognition by the MSL complex

may be mediated through a combination of sequence-

specificity and transcriptional activities. The resulting

transcriptional up-regulation also seems to involve several

mechanisms, encompassing both gene-specific and

chromosome-wide approaches. Interestingly the histone H4

lysine 16 specific MOF histone acetyl transferase, a key MSL

member that hyper-acetylates the male X chromosome, is also

involved in gene regulation beyond dosage compensation.

A comparison of Drosophila and mammalian systems reveals

intriguing parallels in MOF behavior, and highlights the

multidisciplinary nature of this enzyme.
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Introduction
Eukaryotic species with heterogametic sex chromosomes

compensate for differences in gene dosage between the

two sexes by a process known as dosage compensation.

Rather than simple designed solutions, evolution appears

to have produced many different means by which the

process is regulated. In mammals and nematodes this

involves down-regulation of X-linked genes while in

Drosophila the single male X chromosome is transcrip-

tionally up-regulated approximately twofold in compari-

son to the two female X chromosomes (for reviews see

[1–4]; see also other reviews in this issue) (Figure 1). In

this review we focus on the recent reports concerning
www.sciencedirect.com
Drosophila dosage compensation. The emerging view is

that dosage compensation is an integrated network

of regulatory mechanisms that produces a chromosome-

wide system of gene regulation. Moreover, it appears that

over the course of evolution, the Male-Specific Lethal

(MSL) complex members have evolved to perform

additional functions.

The Drosophila MSL complex
The Drosophila male X chromosome differs from the

female counterparts in several important respects. Cyto-

logically, the width of the single male X chromosome is

equal to that of the paired female X chromosomes,

revealing an altered chromatin state. The amount of

RNA synthesized by individual X-linked genes, or the

chromosome as a whole, is also equal between the sexes,

indicating that regulation is at the level of gene expres-

sion [1]. Classical mutational analyses revealed five

proteins (MSL1, MSL2, MSL3, MLE, and MOF) that

are required for male survival, which together comprise

the MSL complex, also known as the dosage compen-

sation complex (for review see [4]). This complex selec-

tively binds the male X chromosome, it is necessary for

both the chromosome puffing and equalization of tran-

script levels, and is thus the key effector of dosage

compensation. The best-characterized consequence of

MSL binding is the specific acetylation of histone 4,

lysine 16 (H4K16Ac) by the MOF/KAT8 histone acetyl

transferase component [5–7]. In addition to the presence

of MSL complex and modified chromatin state, the male

X chromosome is also coated with two noncoding RNAs,

the RNA on the X, roX1 and roX2. The two RNAs appear

functionally redundant, but together associate with and

help target the MSL complex to the chromosome [8,9].

Several additional cofactors are involved in dosage com-

pensation, most of which also modify chromatin, and have

been recently reviewed [2].

X chromosome recognition
Cytogenetic observations show the complex binding to

hundreds of distinct locations, which coat the chromo-

some in a discontinuous fashion (Figure 2). These include

the X-linked genes for the two roX RNAs, which are

exceptionally strong attractors of the MSL complex.

When translocated to an autosome, a roX gene still

mediates MSL binding that can ‘spread’ up to 1 Mb into

the surrounding chromatin [10,11]. The degree of spread-

ing appears to reflect the transcriptional status of the gene

itself [12]. That is, very weak transcription, or at endogen-

ous levels, resulted in local spreading of MSL complexes

around the transgene site, but under high levels of tran-

scription the MSL complex was only found on the X
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Figure 1

Strategies to achieve dosage compensation. Dosage compensation is the mechanism by which species featuring an unequal number of X

chromosomes (pictured) between the two sexes balance the expression of X-linked genes. In a noncompensated system, cells belonging to opposite

sexes would generate different amount of X-linked gene products. Different organisms compensate for dose following a variety of strategies:

mammalian females transcriptionally inactivate one out of the two X chromosomes, Drosophila males hyperactivate the single X chromosome, and

Caenorhabditis elegans hermaphrodites partially repress both of the X chromosomes.
chromosome. This mechanism may affect the distribution

of MSL complex between the roX genes and the other

bound locations on the chromosome.

On the basis of classical polytene staining, it was observed

that partial complexes lacking MSL3, MLE, or MOF

bind a mostly overlapping subset of 60–70 sites, which

were termed Chromosome Entry Sites (CES) on account

that they may be the sites at which the complex first binds

[13]. Alternatively, the sites of highest affinity for the

MSL complex can be identified in immuno-precipitates

of complex components [14]. Individual CES or ‘High

affinity Sites’ (HAS) differed in their ability to recruit

MSL complex, and appeared to share few unifying

characteristics (reviewed in [1]).

With the development of ChIP-chip and ChIP-seq

methods, the nature of these sites has been further

described, and it now appears likely that the HAS encom-

pass those first recognized as chromatin entry sites. With

the improved resolution of these techniques, the number

of HAS now ranges between 130 and 150 [15��,16��].
However, an objective HAS data set is difficult to

describe. The locations bound by partial complexes differ

slightly depending on which component is lacking, even
Current Opinion in Genetics & Development 2010, 20:171–178
at polytene resolution [14]. A detailed comparison of

high-resolution profiles of MSL complexes lacking differ-

ent components is thus similarly desirable. Compu-

tational analyses resolved a DNA sequence motif at

the heart of the HAS: a nearly perfect repeat of eleven

GA dinucleotides that can independently attract func-

tional MSL complex [15��,16��]. These ‘MSL Recog-

nition Elements’ (MRE) lie predominantly in intronic

or noncoding sequences near genes, and are associated

with nucleosome depletion. This indicates that the local

chromatin state differs from that of the secondary sites of

MSL complex binding, and such epigenetic marks should

now be characterized. If differences persist between sites

obtained from differing tissues and developmental states,

then the transcription profile of such sites must also be

considered.

Targeting active chromatin
ChIP-chip analyses of wild-type MSL binding reveal that

most bound sites differ from those of the highest affinity

[17–19,20��]. When at full occupancy, the MSL proteins

bind over 700 regions, are almost exclusively within genes

rather than intergenic sequences, exons not introns, and

prefer coding sequences to un-translated regions. On

binding profiles scaled by gene length, MSL proteins
www.sciencedirect.com
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Figure 2

The increasing resolution of techniques improves the description of the Drosophila MSL binding activity. The nature of Drosophila MSL binding sites is

illustrated according to the method used to describe them. (a) Immunofluorescent staining of polytene chromosomes shows chromatin binding, with

an enrichment on the male X chromosome. Less intense autosomal binding of MOF is also apparent. (b) Schematic representation of available

genome-wide ChIP-chip and ChIP-seq profiles. The increased resolution of these techniques confirms the polytene observations, and allows precise

description of the binding sites. (c) Examination of profiles over gene units reveals differential binding of MSL proteins. MSL1, MSL3 and MOF

colocalize across the transcribed portion of genes, especially toward the 30 end. MOF also binds the 50 regions of genes, peaking at the transcription

start site.
peak toward the 30 end of target genes. About 90% of the

target genes are expressed, and clearly bound by RNA

PolII; a correlation that hints the MSL complex may be

targeted to active chromatin.

Indeed, transcription itself can attract the MSL complex.

Random insertions of an inducible Gal4 promoter on the

X chromosome attract complex to the newly transcribed

sequences, downstream of the promoter [21]. Transloca-

tions of X-linked genes, such as the mof gene, to an

autosome also attract the MSL complex, even when

expressed from different promoters or transcribed in an

anti-sense direction, but not when lacking a promoter

[22]. The complementary approach has also shown MSL
www.sciencedirect.com
binding to depend on gene activation [23]. A large auto-

somal fragment spanning two active genes was inserted

on the X chromosome, where the genes acquired MSL

binding, H4K16 acetylation, and compensation. Deletion

of the translocated promoter regions abolished MSL

binding and reduced H4K16 acetylation, providing

further evidence that MSL attraction is transcription-

dependent.

The binding profile of MSL3 correlates with that of

H3K36me3, a modification that is also enriched in the

30 region of transcribed genes [24]. Knock-down of the

methyl-transferase dSet2 (alias Hypb, KMT3) reduced

H3K36me3, bound MSL complex and X-linked
Current Opinion in Genetics & Development 2010, 20:171–178
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H4K16Ac, and affected compensation of X-linked genes

[25�]. The chromodomain of MSL3, thought to bind

H3K36me3, was necessary for the establishment of the

wild-type binding pattern [26�]. Recombinant MSL3

binds DNA and nucleosomes, prefers Set2-methylated

nucleosomes, and exhibits reduced binding to all sub-

strates when lacking the chromodomain [24,26�,27].

However, the active chromatin state must differ from

the inactive in many ways besides H3K36me3, and

recognition of this epigenetic mark may be merely one

of several contributory mechanisms to the identification

of active chromatin.

The mechanism by which transcription recruits the MSL

complex remains unclear. It is tempting to speculate that

since the MSL complex contains RNA binding proteins

[28–31], noncoding transcripts originating from the target

sites may also contribute toward MSL targeting

[32��,33��]. These could either be promoter-associated

RNAs or even the transcripts from the dosage compen-

sated genes. However, whether there is any contribution

of additional RNAs in X chromosomal targeting, apart

from roX RNAs, remains to be experimentally deter-

mined. It is also important to bear in mind that since

transcription occurs genome-wide, although important, it

cannot be the only contributor to achieve X chromosome

specificity. We anticipate that future studies will once

again refine the model of MSL attraction.

Factors contributing to up-regulation of the
male X chromosome
The mechanism by which the MSL complex enhances X-

linked gene expression remains a mystery. Although the

MSL complex preferentially binds active genes, not all

active genes on the X are bound by the MSL complex

[17–19,20��,34]. Furthermore, expression of unbound

genes on the X chromosome can also be affected upon

MSL depletion [17,19,34], suggesting that the MSL

complex may also have long distance effects on the X

chromosome. Moreover, it was recently shown that

although integration of HAS on autosomal locations

increased transcriptional activity of a reporter gene, there

were also exceptions to this rule, suggesting that for some

cases sequence-dependent targeting may not be suffi-

cient for up-regulation [16��]. Thus, the mechanism of

transcriptional up-regulation remains elusive.

At least one direct effect of MSL binding is the MOF-

mediated acetylation of H4K16. Nucleosomes with the

H4K16 acetylation resist chromatin compaction, and

inhibit nucleosome remodeling [35]. Recently, using in
vitro chromatin assembly that closely mimicked physio-

logical conditions it was observed that the acetylation

specifically inhibits the formation of the 30 nm fiber, to

the same degree as lack of linker histone [36]. The de-

condensed chromatin caused by this acetylation could
Current Opinion in Genetics & Development 2010, 20:171–178
thus facilitate increased transcription of the male X

chromosome.

The binding profile of H4K16Ac resembles that of the

MSLs: enriched over active genes on the male X chromo-

some, peaking toward the 30 ends of coding regions, and is

dependent on MOF [20��,37]. This 30 bias implies that

the process may be regulated at the level of transcription

elongation. But a second class of MOF binding is also

apparent, and this appears to be distinct from its role in

the MSL complex [20��]. ChIP-chip binding profiles of

the strongest MOF sites within genes were scaled to gene

length, and revealed a bimodal distribution of MOF. In

addition to the MSL-type distribution, a strong peak of

MOF binding was detected at many promoters, regard-

less of sex or chromosomal location. A similar but broader

profile was also observed for the acetylation also, across

the profile of active genes but higher at the 50 end on

autosomes and the female X chromosome. This general 50

MOF and H4K16Ac remained even after depletion of

MSL1, arguing for a role of MOF that is independent of

dosage compensation [20��].

However, recent analyses of H4K16Ac profiles also reveal

a low general enrichment on the male X chromosome, at

all locations irrespective of transcriptional activity

[34,38�]. The enrichment was dependent on the MSL

complex, even at sites where the complex did not bind

[34]. However, since these profiles did not have a comp-

lementary MOF profile for comparison, it is difficult to

interpret how much is contributed by MOF or from

another HAT such as ATAC2 [39�].

In comparison to the profiles of nascent transcripts sep-

arated by cell cycle, H4K16Ac enrichment correlated to

areas of early DNA replication [38�]. If H4K16Ac does

indeed help to specify zones of replication initiation, the

global enrichment on the male X chromosome may reflect

an additional mechanism of gene regulation beyond

chromatin de-condensation. Early replication itself could

provide twice the transcript for a longer amount of time,

and remove some need for transcriptional up-regulation.

The regulation of subchromosomal regions may also be a

strong contributor to dosage compensation. Zones of

active transcription associate with nuclear pores, punctu-

ating generally repressive chromatin at the nuclear per-

iphery, suggesting that increased association of X

chromosomal regions with nuclear pores may lead to

higher transcription levels [40]. Components of the

nuclear pores (Mtor and Nup153) copurify with MSL

proteins [41]. Furthermore, genome-wide analysis of

these components now shows that these proteins bind

chromatin in a domain-like fashion encompassing active

genes. The X chromosome is enriched in these domains

in a male-specific manner [42��]. Taken together with the

recent observations in yeast showing that the yeast
www.sciencedirect.com
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nuclear pore component MLP1 mediate gene loops and

that these loops enhance transcriptional re-activation of

genes [43�], it is tempting to speculate that in Drosophila
nuclear pores may also mediate gene loops, which could

help transcriptional efficiency and aid dosage compen-

sation.

Above we discuss possible scenarios where histone H4

lysine 16 acetylation and the MSL complex are actively

involved in regulation of dosage compensation of the

male X chromosome. An alternative hypothesis put for-

ward by Birchler and colleagues suggests that the twofold

increase in X-linked gene expression is caused by the

imbalance of transcription factors in males relative to

autosomes [44–46]. According to this model, the MSL

complex accumulates on the X chromosome at the

expense of the autosomes, and as a consequence seques-

ters the histone acetyl transferase MOF to the male X

chromosome. Hyperacetylation of the male X chromo-

some as a result of this sequestration is then counteracted

by the MSL complex itself, leading to a fine-tuning of

gene expression to twofold up-regulation. The MSL

complex therefore ‘protects’ the autosomal genes from

becoming hyperactive if MOF is unleashed from the X

chromosome. Since MOF is indeed bound to many

autosomal sites [20��], future experiments promise to

reveal how the balance between X and autosomes is

indeed achieved and how MSLs or even the newly

identified NSL proteins fine-tune gene expression [41].
Figure 3

Different roles for the mammalian acetyltransferase MYST1/hMOF. hMOF resid

in a complex with MSL1v1/hNSL1, hMOF is responsible for the acetylation of

recruited to the mammalian MSL complex via an interaction with hMSL1, the pr

acetylates the Tip5 component of the NoRC chromatin remodeling complex,

www.sciencedirect.com
Role of MSL complex members beyond
dosage compensation
Accumulating evidence suggests additional functions of

the MSL proteins that are still largely unexplored. A

prominent example is the global analysis of MOF, which

revealed distinct binding behavior on the male X chromo-

some versus autosomal genes [20��] (Figure 2). Further-

more, roX RNAs affect the regulation of genes on the

fourth chromosome [47��]. These studies raise the possib-

ility of additional functions for these proteins/RNAs

beyond dosage compensation.

Genome-wide profiling of hMOF/MYST1 in human

CD4+ T cells has revealed that similar to the Drosophila
protein, hMOF prevalently binds promoters [48��].
Although not thoroughly addressed yet, single gene stu-

dies indicate that hMOF binding may also be detectable

at the 30 end of target genes and in other genomic

elements [49,50,51�]. A systematic analysis of the mam-

malian counterparts of the MSL complex will reveal how

prevalent is the contribution of the 30 enrichment in the

genome.

Similarities between the Drosophila and mammalian sys-

tems go beyond the similarities in MOF binding pattern.

MOF-containing MSL complexes are also conserved

between Drosophila and in mammals [41,52]. So far evi-

dence for noncoding RNAs associated with the mamma-

lian complex is lacking. However, based on extensive
es in at least two different complexes in mammalian cells. When recruited

both p53 K120 and H4K16 at the 50 end of target loci. If MYST1 is instead

otein specifically acetylates H4K16Ac at the 30 end of target loci. hMOF also

but the regulation of specificity for this substrate is as yet unknown.

Current Opinion in Genetics & Development 2010, 20:171–178
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conservation of protein interaction it is quite possible that

roX-like RNAs are waiting to be discovered even in the

mammalian system. Interestingly, it is becoming clear

that MSL proteins are not the only proteins that hold the

right to interact with MOF. In fact, a number of novel

interaction partners have also been copurified in both

species [41,52,53]. This analysis clearly indicated that

MOF resides in distinct complexes [41,51�].

Further analysis of these complexes has shown that

although histone H4 lysine 16 remains one of the major

substrate of hMOF, additional substrates exist (Figure 3).

In Drosophila, MSL3 and MSL1 have been shown to be

acetylated by MOF, while in mammals p53 and TIP5

have recently been identified as targets of hMOF

[29,31,51,54]. Similar to the Drosophila system where

acetylation of MSL3 modulates the interaction with

roX RNAs, in mammals acetylation of TIP5 also affects

its interaction with RNAs generated from ribosomal pro-

moters [29,54]. Furthermore, association of hMOF with

hMSL1v1/hNSL1 leads to acetylation of p53 and intro-

duction of a bias toward acetylation of H4K16 at the 50

end of target loci. This bias contrasts with the specificity

for the same histone residue at the 30 end of target loci

displayed by the hMSL1–hMOF complex [51�]. Taken

together, these findings suggest that the specificity of

MOF for different substrates can be controlled through

interactions with different chromatin modifying com-

plexes.

Intriguingly, another component of the hMSL complex,

hMSL2, has also been shown to perform tasks beyond the

ones known in Drosophila. Although it remains unclear

whether this is an hMSL complex-independent activity,

hMSL2 is able to ubiquitinate p53 and promote its

cytoplasmic localization without affecting its stability,

in an Mdm2-independent fashion [55]. It remains to be

verified whether similar parallels also exist in the Droso-
phila system.

Male-specific lethality appears to be a unifying feature of

the dosage compensation complex members in Droso-
phila. Nevertheless, here again closer inspection of MOF

mutant females has shown that lack of MOF leads to

female sterility and reduced life span [34] (Conrad and

Akhtar, unpublished results). A complete set of knockout

mouse models is missing for MSL proteins. However,

some progress has been made recently. hMOF is an

essential gene in mice, and its absence leads to early

embryonic lethality and severe loss of H4K16 acetylation,

indicating that hMOF is the major H4K16 histone acetyl

transferase also in mammals [56,57].

Given the increasing importance of epigenetic regulators

in oncogenesis, it is perhaps not surprising that global

histone modification patterns constitute hallmarks of

human cancers [58,59]. Interestingly, H14K16Ac is
Current Opinion in Genetics & Development 2010, 20:171–178
among the growing list of histone modifications associated

with cancer phenotypes and/or prognostic impact [58].

Recent data suggest that abnormal levels of hMOF also

correlate with malignant phenotypes [56,57,60,61]. Data

from mouse models showed that high levels of hMOF

correlate at the cellular level with a faster growth rate,

prolonged lifespan and oncogenic transformation [56]. On

the other hand, low levels of hMOF have also been

reported to correlate with enhanced genomic instability,

nuclear polylobulation and cancerogenesis [57,60–62].

Perhaps, a more direct link between hMOF and cancer

is represented by the hMOF-dependent acetylation of

p53 at K120 [51�,63]. This modification is able to trigger

apoptosis upon activation of the proapoptotic p53 target

genes BAX and PUMA after induction of DNA damage

[51�,63]. Future studies will reveal the mechanisms oper-

ating behind these functions and how to separate gene-

specific versus global effects of histone H4 lysine 16

acetylation. However, what is already apparent is that

MOF plays a mediatory role and with varying outputs

depending on which protein networks are being utilized.

Conclusions
The MSL complex provides a well-studied example of a

chromatin remodeling complex that regulates the male X

chromosome in Drosophila. As the resolution of our

analysis increases we improve our understanding of the

possible mechanisms underlying X chromosomal regula-

tion. In parallel, significant progress is also being made in

the study of the mammalian MSL orthologues. Thus a

proper appreciation of the dosage compensation process

should also encompass the additional functions that the

key proteins perform. Evolutionary comparison of these

proteins also promises to reveal novel insights that go

beyond X chromosome regulation and unveil a broader

role in gene regulation.
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