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ABSTRACT

Accurate identi�cation of protein secondary structures is
bene�cial to the structural interpretation of low-resolution
X-ray and EM electron density maps. Existing alpha helix
identi�cation methods mainly focus on locally voxelwise
classi�cation and then link the helix-voxels based on post-
processing processes. In this paper, a novel alpha helix
identi�cation approach, named as SSEPredictor, based on
Metropolis-Hastings sampling is proposed, which can pro-
vide both locally and globally optimized prediction for alpha
helical structures in low-resolution electron density maps.
The approach has been tested on X-ray crystallographic elec-
tron density maps at 8 �A resolution. The experimental results
show that the identi�cation accuracy is promising.

Index Terms— secondary structure identi�cation, low-
resolution X-ray crystallographic data, Metropolis-Hastings
sampling, steerable �lters.

1. INTRODUCTION

The knowledge of the three-dimensional structure of a biolog-
ical macromolecule is a key step for understanding its func-
tion. X-ray crystallography [1] and nuclear magnetic reso-
nance (NMR) [2] are two widely used techniques to obtain
high (up to atomic) resolution structures of proteins. Electron
microscopy (EM) serves as a complementary tool to study
large complexes and macromolecules that are dif�cult to crys-
tallize and beyond the size threshold for NMR spectroscopy.
Well-ordered crystals are a pre-requisite for high-resolution
X-ray structures. They are dif�cult to obtain for membrane
proteins and for large, multi-subunit complexes, yet, initial
crystals with less order can often be grown. X-ray diffrac-
tion data and phases of those crystals can be used for struc-
tural analysis at low resolution. Recently, the number of low-
resolution X-ray crystallography data deposited in the Pro-
tein Data Bank (PDB) [3] has increased [4], strengthening the
view that valuable biological information can already be ob-
tained from structural analysis at low resolution.

At intermediate resolutions of 5-10 �A, the secondary struc-
ture elements (SSEs), α-helices and β-sheets, are visible in

the electron density maps of macromolecules. Until recently,
several approaches have been developed for EM analysis to
identify alpha helices in medium resolution electron density
maps. However, they can theoretically also be applied to
low-resolution X-ray crystallography maps [4]. 3×3 second
moments tensor after �ve-dimensional template-based cross-
correlation is used by the helixhunter method [5] to locate
candidate helical regions. EMatch [6] is another method de-
pending on template matching. Local cylinder-like regions
are built with a graph-based method, then a linkage stage is
applied for linking fractions of the same helix. HelixTracer
[7] establishes a forest of graph trees based on Sobel convo-
lution kernels, different trees are merged and �nally each left
tree corresponds to a helix. SSEHunter [8] uses pseudoatoms
to reduce the data complexity, each pseudoatom is assigned
a composite score based on several criterions, �nally all the
pseudoatoms with high composite scores are manually linked
together to represent the helices. The tensor based method
[9] selects local critical points with cylinder-like eigenvalues
as the seed points. From each seed point, the method traces
helix structure in two opposite directions based on 3×3 local
structure tensor.

All existing alpha helix identi�cation approaches mainly
focus on locally voxelwise classi�cation with various criteri-
ons. The identi�ed helix-like voxels are then linked or gath-
ered into groups. For each group a helix model, usually a line
segment with two end points is generated with certain post-
processing. The main disadvantage of this kind of method is
that the minor errors in local steps can accumulate and affect
the �nal results. In this paper we propose a new alpha he-
lix identi�cation method based on Metropolis-Hastings sam-
pling, which can give global optimization for alpha helix con-
�guration. Similar methods have been used for road detection
[10] and �ber tracking [11].

The rest of this paper is organized as follows. Section
2 de�nes our proposed alpha helix prediction model based
on Metropolis-Hastings sampling. In Section 3 a new con-
nect proposal has been designed for generating connections
between segments. Section 4 shows how to calculate the ex-
ternal energy part of our model in a fast way. The experimen-
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tal results for low-resolution X-ray electron density maps has
been given in Section 5. Finally, conclusions and future work
are presented in Section 6.

2. HELIX STRUCTURE MODELING

Enlightened by [11], we denote an electron density map as
D : R3 → R and the model for global helix structure con-
�guration by M : R

3 → R, which denotes the union of
all the segments. A single segment (particle) is denoted as
S : R3 → R, which determined by a spatial position x ∈ R3

and an orientation n ∈ S2. We want to maximize the pos-
teriori probability P (M |D) to �nd the most likely model for
given density map.

M =

N∑
i=1

Sxi,ni
(x) (1)

E(M) = λinEin(M) + λexEex(M,D) (2)

P (M |D) =
1

Z
exp

(
−λin

Ein(M)

Tin
− λex

Eex(M,D)

Tex

)

Z =
∑
M

exp

(
−λin

Ein(M)

Tin
− λex

Eex(M,D)

Tex

)

The external energyEex express the dissimilarity between the
data and the hypothetical model. The internal energy Ein

drives the connected segments into helix-like shape, more
precisely the con�guration of all segments should be an union
of smoothed curves. λin and λex denote the weights for Ein

and Eex respectively. The energy of the con�guration M fol-
lows Equation (2). Tex and Tin are global time-varying param-
eters called the temperatures.

(a) Structure of alpha helix in ribbon presentation
and corresponding electron density map

(b) Segments con�guration

Fig. 1. Expected con�guration of a single alpha-helical trans-
membrane segment of the M2 protein from in�uenza A virus
(PDB entry 1MP6)

The internal energy part of the proposed model for de-
tecting alpha helices in electron density maps is the same as
de�ned in [11]. Figure 1 demonstrates the expected con�gu-
ration of segments for the transmembrane domain of the M2

protein from in�uenza A virus (PDB entry 1MP6), which is
composed of a single, nearly ideal alpha helix. The electron
density map is shown as transparent gray surface in Figure
1(a). There are �ve segments (S1 to S5) linked together to
show the location of the helix axis. The minus and plus signs
denote two endpoints of each segment, their positions can be
calculated as x− ln and x+ ln, where l is half of the length
of one single segment. Note all the images in this paper are
generated with UCSF Chimera [12].

(a) 3D structure (b) Central slice

Fig. 2. Segment demonstration

Figure 2 demonstrates the segment we use for helix pre-
diction. The red and blue parts correspond to positive and
negative density respectively. The segment can be generated
as

So = −
2

3
gxx + gyy + gzz

S =
−w

max(So)
So (3)

where gxx, gyy and gzz are secondary derivatives of gaussian
function. max(So) denotes the maximum of structure So,
which has been presented as the optimal steerable �lter for
curve detection [13]. w is the weight of the segment.

To maximize P (M |D), the Metropolis Hastings sam-
pler [14] has been used to draw samples from the posterior
distribution. By lowering the temperatures Tin and Tex, it
becomes more and more likely to sample from maxima of
P (M |D) which correspond to minima of E(M). The idea
of the Metropolis Hastings sampler is to choose certain state
transitions randomly. These transitions are chosen according
to certain proposal distributions. The approach is as follows:
choose a modi�cation of the current state M according to
a proposal distribution pprop, we call this modi�cation M ′.
Then, accept this modi�cation if the so-called Green’s ratio
R is above 1, where R is given by

R =
P (M ′ | D)

P (M | D)

pprop(M | M ′)

pprop(M ′ | M)
. (4)

If R is below 1, the modi�cation is accepted with proba-
bility R. After a certain number of iterations (the burn-in
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phase) the resulting chain of states follows the desired dis-
tribution. Then, the temperature is slowly decreased. The
proposal splits into three different types, where each of the
proposal is selected with a certain probability: segment cre-
ation/deletion (pbirth, pdeath), segment moves (pshift, popt) and
segment connections (pconn). Pseudocode of the algorithm is
given below.

Algorithm 1 Optimization
Input: Start with empty reconstruction M
Output: helix reconstruction M

1: for j = 1 : #iterations do
2: Select one of the proposals according to the probabili-

ties pbirth, pdeath, pshift, popt, pconn

3: According to proposal type, generate new state M ′

4: Compute Green’s ratio according to equation (4)
5: if R > random number ∈ [0, 1] then
6: M := M ′

7: end if
8: Reduce the temperature
9: end for

3. CONNECT PROPOSAL

Segment creation/deletion and moves mentioned in the pre-
vious section follow the techniques proposed in [11]. Here
we propose a new connect strategy, which has more concise
de�nition and needs less computation time. Once the con-
nection proposal is chosen, select uniformly an endpoint of a
segment. Call this endpoint e. Thus, the particular endpoint
e is selected with probability 1

2N
where N is the number of

segments in the current state.
If the endpoint is free, then propose a connection that for

all neighboring endpoints in the neighborhood of e compute

pe(ek) =
1

Z
exp(−Up

con(e, ek)/Tprop)

where

Z =
∑

k∈neighbors

exp(−Up
con(e, ek)/Tprop)

and Up
con is the proposal connection potential

Up
con(e, e

′) = (e− x)2 + (e′ − x)2 − Lprop

x =
1

2
(xe + xe′)

where xe and xe′ denote the center positions of the two seg-
ments containing endpoints e and e′. Based on this select a
neighbor ej according to the distribution pe. The Gibbs ra-
tio for connecting the endpoint e with this neighbor can be

written as

R = exp(−ΔEcon/Tin)
1

pe(ej)

= exp[−Ucon(e, ej)/Tin + Up
con(e, ej)/Tprop] · Z

In the special case Tin = Tprop and L = Lprop we obviously
have R = Z . If just Tin = Tprop then

R = exp(L− Lprop) · Z (5)

If the endpoint e is already connected with an endpoint ej
break the connection with Gibbs ratio

R = exp(−ΔEbreak/Tin) · pe(ej)

= exp[Ucon(e, ej)/Tin − Up
con(e, ej)/Tprop]/Z

If ej is not in the neighborhood of e, which means it has
moved out of the neighborhood of e, then pe(ej) = 0, and
consequently R = 0. It means we are not allowed to break
the connection in this situation. Again, for the special case
Tin = Tprop and L = Lprop we have R = 1/Z . And also, if
just Tin = Tprop we have

R = exp(−(L− Lprop))/Z (6)

4. EXTERNAL ENERGY

The external energy part in [11] is specially designed for
High-Angular-Resolution-Diffusion data (HARDI), here we
propose a new external energy strategy for low-resolution
electron density maps. According to Equation (1), a birth or
death of segment can be expressed as

M ′ =
N∑
i=1

Sxi,ni
(x)± Sxj ,nj

(x) (7)

and it only effects the external energy, which can be expressed
as (for simpli�cation the suf�x xj and nj have been replaced
by a single j)

�Eex =

∫
|M ± Sj −D|

2
dx−

∫
|M −D|

2
dx

= ±2

∫
M · Sj dx∓ 2

∫
D · Sj dx+

∫
S2

j dx

where Sj is just a scalar, M · Sj and D · Sj can be pre-
calculated to generate two look-up tables to reduce the online
running time. For D · Sj , just de�ne

F (xj ,nj) =

∫
D · Sxj ,nj

dx

when nj is given, it can be calculated in a convolution way

Fnj
(xj) = D ∗ Snj

=

∫
D(τ)Snj

(xj − τ) dτ
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For M · Sj

∫
M · Sj dx =

N∑
i=1

∫
Sxi,ni

(x) · Sxj ,nj
(x) dx

let’s de�ne

G(xi,ni,xj ,nj) =

∫
Sxi,ni

(x) · Sxj ,nj
(x) dx

if we set Si �xed, and let Sj move and rotate around it, again
G can be calculated in a convolution way

Gni,nj
(x) = Sxo,ni

∗Sx,nj
=

∫
Sxo,ni

(τ) · Sx,nj
(x − τ) dτ

where x = xj − xi. The change of external energy for shift
and opt-shift proposal [11] can be calculated as a death pro-
posal followed by a birth proposal.

5. EXPERIMENTS

5.1. Experimental Data

Three protein structures with different SSE composition were
selected for validation of the experimental approach. The
multidrug ABC transporter (2HYD) consists mainly of alpha-
helices. The porin NanC (2WJQ) is an outer membrane pro-
tein with the typical beta-barrel fold. The response regulator
PleD (2V0N) has a mixed SSE composition. Protein struc-
tures as well as the corresponding structure factor �les for se-
lected model proteins were taken from the PDB [3]. Electron
density maps were calculated using the experimental inten-
sities and structure based phases at 8 �A resolution using the
CCP4 software package [15]. The X-ray structures and their
corresponding electron density maps are displayed in Figure
3(a), 5(a) and 6(a), respectively.

5.2. Parameters

The proposed approach depends on several parameters. Ac-
cording to Equation 3, there are two parameters for each seg-
ment, the weight w and the standard deviation σ of the gaus-
sian function. σ controls the diameter of the positive part of
each segment, it has been set to 3 according to the mean ra-
dius 2.5 �A for a typical alpha helix. w should be proportional
to the mean of local maximia, here it’s set to 0.002. If w is too
low, we will have super�uous segments for one helix, if it’s
too high, false negative detections will occur. The segment
length l controls the expected curvature of the �bers. Large
l imply low curvature and vice verse. Here l is set to 9. The
connection bias L, whose de�nition can be found in [11], is
set to 1.5. Large value can cause lots of false positive connec-
tions. The weights for internal and external energies are set
as λin = λex = 1.

Other parameters are the iteration parameters. The indi-
vidual proposal probabilities are set as follows: pbirth = 0.45,

pdeath = 0.12, pshift = 0.22, popt = 0.12 and pcon = 0.09.
The prediction results do not depend on these probabilities,
they just in�uence the number of iterations to achieve a stable
result. The number of iterations depends mainly on the com-
plexity and the size of the protein electron density map. If the
density map is supposed to have many alpha helices, the itera-
tions number should be high. In our experiments, the number
of iterations are set to 30 millions. The starting external tem-
perature Tex is set to 2. Too high starting temperature can
cause the sampler stay too long time in the ’burn-in’ stage,
and too low starting temperature will cause unstable predic-
tion results. The decreasing ratio for Tex is set to 0.95 for 100
thousand iterations. Tin is set to 1 and �xed during the whole
sampling process. Especially Tprop and Lprop are set to equal
to Tin and L, respectively.

5.3. Run time

The SSEPredictor is implemented on a PC equipped with In-
tel(R) Core(TM)2 Duo 3.00GHz CPU. The run time of the
program is data dependent. Take the multidrug ABC trans-
porter (2HYD) as an example, there are 45059 nontrivial vox-
els, whose densities are higher than the mean of local max-
imia, in the electron density map. It takes approximately 8
minutes to generate the �nal prediction.

5.4. Results and discussion

As mentioned in Section 1, there are several methods existing
for alpha helix identi�cation for low-resolution electron den-
sity maps. In this section the performance of our proposed
approach, which we name as SSEPredictor, will be compared
with two of them, the HelixTracer method [7] and the Lo-
caltensor approach [16]. We do not compare with the he-
lixhunter [5], which is integrated in the SSEHunter approach
[8], because it needs manual interaction. The source code of
another automatic method Ematch [6], was not available to
us.

Figure 3(b-d), 5(b-d) and 6(b-d) show the superimposition
of the experimental helix prediction (blue threads) superim-
posed on the structural model for protein 2V0N, 2WJQ and
2HYD, respectively1. For all the three proteins, SSEPredictor
gives less false positive detections than the other two methods,
in particular for the pure beta protein 2WJQ. Sometimes the
length of the predicted helix of SSEPredictor is longer than
the real length of the helix (see the black circle parts of Fig-
ure 6(b)). This might be caused by the internal energy, which
makes it try to connect as many potential segments as possi-
ble. This problem can be solve by adjusting the weight λin

and λex for internal energy and external energy. SSEPredic-
tor has advantages for detecting long and nonhomogeneous

1The parameters of HelixTracer and Local tensor have been optimized
according to the prediction results of protein 2V0N and 2HYD by grid search
method.
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(a) Electron density map (b) SSEPredictor (our method)

(c) HelixTracer (d) LocalTensor

Fig. 3. The X-ray structures of the multidrug ABC transporter (PDBentry 2HYD) are shown in ribbon presentation with
α-helices and β-sheets highlighted in red and green, respectively. The electron density maps are shown in gray and the experi-
mental helix prediction are shown as blue threads.

helices, that is, for SSEPredictor less ’broken’ helices are ap-
pearing. Consider the black circle parts in Figure 3(c) and
3(d) comparing with Figure 3(b), SSEPredictor has success-
fully detected all helices, for the Local tensor approach sev-
eral breaks occur, and the HelixTracer method misses even
more helices. For HelixPreditor problems with ’double’ de-
tections occur. For example, consider in Figure 4, which is an
enlarged version of the black box in Figure 3(b). This hap-
pens if the weight of one helix segment is too low, then, more
than one segment is needed to explain the data. We can add a
post-processing part after the sampling to immerge super�u-
ous segments into one. The same procedure has been used by
the Local tensor approach [16].

6. CONCLUSION

We propose a fully automatic method, named as SSEPredic-
tor, to extract secondary structure elements in low-resolution
electron density maps. The helix detection problem is formu-

Fig. 4. Partial enlargement of 2HYD prediction

lated as an inverse problem in an Bayesian framework and is
optimized with a Metropolis Hastings sampler. The main dif-
ference of our method to recent ones [7][9] is that the detec-
tion is performed in one optimization step. No preprocessing
or postprocessing has to be applied to obtain results that are
comparable to state-of-the-art methods, which usually consist
of whole processing pipelines, which may lead to erroneous
results, if just one step in the pipeline fails. The experimen-
tal results show that our method accurately detects SSEs in
the selected model systems. Therefore, it appears as a valu-
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able tool for structural interpretation and generation of simpli-
�ed models from experimental low resolution electron density
maps obtained by X-ray crystallography or EM.

For future work we plan to extend the helix model to a
joint model consisting of helices and strands, which is con-
ceptually quite easy, but, from a practical viewpoint, a chal-
lenging task.
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(a) Electron density map (b) SSEPredictor (our method) (c) HelixTracer (d) LocalTensor

Fig. 5. The X-ray structures of the porin NanC (PDBentry 2WJQ) are shown in ribbon presentation with β-sheets highlighted
in green. The electron density maps are shown in gray and the experimental helix prediction are shown as blue threads.

(a) Electron density map (b) SSEPredictor (our method)

(c) HelixTracer (d) LocalTensor

Fig. 6. The X-ray structures of the response regulator PleD (PDB entry 2V0N) are shown in ribbon presentation with α-helices
and β-sheets highlighted in red and green, respectively. The electron density maps are shown in gray and the experimental helix
prediction are shown as blue threads.
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