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Multiple facets of nuclear periphery in gene expression control

Ghislaine Arib and Asifa Akhtar

Nuclear pore complexes play a central role in controlling the

traffic between the nucleus and the cytoplasm. Progress during

the last decade has highlighted nuclear periphery components

as novel players in chromatin organization, gene regulation,

and genome stability. For instance, lamins associate with

repressive chromatin while nuclear pores tend to associate

with active chromatin. Interestingly, nucleoporins (Nups) act

not only at the nuclear periphery but also in the nucleoplasm.

Here we provide an overview of the latest findings and discuss

the functional importance of nucleoporin association with

specific genes, their role in transcriptional memory, the

coupling of transcription and mRNA export, and genome

integrity.
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Introduction
Chromosomes are highly organized within the nucleus

and reside in specific functional subnuclear compart-

ments in interphase cells [1]. These compartments are

not membrane delimited and instead arise from the

clustering of DNA regions with specific proteins, creating

microenvironments that can favor or impede particular

cellular processes such as transcription regulation or

replication. Thus, the three-dimensional (3D) nuclear

architecture provides a fundamental level for the regu-

lation of gene expression (for review see [2,3]).

The nuclear envelope (NE) surrounds and defines this

complex nuclear architecture. It consists of two mem-

brane bilayers, perforated by nuclear pores, which control

the traffic in and out of the nucleus. The NE is also

associated with perinuclear proteins including mem-

brane-associated or transmembrane proteins and the

nuclear lamina. In higher eukaryotes, the inner nuclear

membrane is associated with a network of intermediate

filament proteins called lamins, which help to maintain

the spherical geometry of nuclei. These play an important

role in many fundamental processes such as NE assem-

bly/disassembly during mitosis, gene expression, DNA

replication and nuclear pore complex (NPC) positioning

(for review see [4]).

The overall structure of the NPC is evolutionarily con-

served and is a large protein complex of about 60 MDa

embedded in the NE [5–7]. The primary function of the

NPC is to mediate selective bidirectional transport be-

tween the nucleus and the cytoplasm [8,9]. NPCs are

composed of approximately 30 different nucleoporins

(Nups) [9,10] that fall into two broad categories: firstly,

scaffold Nups and secondly, peripheral Nups. The scaf-

fold Nups form the NPC core. On the other hand, the

peripheral Nups, many of which contain phenylalanine-

glycine (FG) repeats, are responsible for establishing the

permeability barrier [11] and mediating nuclear traffick-

ing [12]. Interestingly, several Nups are mobile and

dynamically shuttle between the nucleoplasm and the

NPC [13–15]. In this review, we highlight the role of

nuclear periphery components in transcriptional control

(Table 1).

Gene silencing at the nuclear periphery
Classical cytological studies revealed that heterochroma-

tin has a tendency to associate with the nuclear periphery,

raising the possibility that proximity to the NE facilitates

silencing (for review see [16]). In Saccharomyces cerevisiae,
for example, telomeres form clusters at the nuclear per-

iphery [17]. Although tethering to the nuclear periphery

has been shown to promote silencing, moving to the

nuclear periphery is neither necessary nor sufficient for

silencing [18,19].

Observations in higher eukaryotes also suggest a repres-

sive role of the NE. For example, in human cells, gene-

poor chromosomes tend to localize at the nuclear periph-

ery as well as the inactive X chromosome or Barr body

[20,21]. Several loci were found to localize near the NE in

their inactive state and to change their nuclear localiz-

ation upon induction of transcription. For example, the

IgH locus moves away from the nuclear periphery in B

cells concomitant with the initiation of V(D)J recombina-

tion [22]. Similarly, when the CFTR (cystic fibrosis

transmembrane conductance regulator) gene is inactive,

it preferentially associates with the nuclear periphery

while in its actively transcribed state it associates with

euchromatin in the nuclear interior [23].
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Genome-wide studies performed both in Drosophila mel-
anogaster and in human cells have revealed that lamin-

bound genes are generally transcriptionally silent, late

replicating and lack active histone marks. Interestingly,

lamin-associated genes can be released from lamins upon

transcriptional activation suggesting that perinuclear

association promotes silencing [24�,25�]. All together

these findings support the long-standing classical view

of heterochromatin domains residing close to the nuclear

membrane, and that the interaction of genes with lamins

generally leads to gene repression (Figure 1).

Gene activation at the nuclear periphery
Several lines of evidence indicate that the nuclear per-

iphery has a dual role in gene regulation, since it is not

only involved in creating a repressive compartment but

also promotes high levels of gene induction (Table 1).

Already in 1985, the ‘gene gating’ hypothesis suggested
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Table 1

Summary of nucleoporins implicated in transcription regulation and genome stability.

Yeast Flies Mammals Location Functions

Mlp1

Mlp2

Megator (Mtor) TPR Nuclear basket Mtor is also present in the nuclear interior [80]

Associates with active genes [28,39,40��]

Mlp1/2 play a role in control quality of exported

mRNA [81]

TPR functions in the mitotic spindle checkpoint [82]

Mlp1p is implicated in transcription memory [57��]

TPR is required for the formation of heterochromatin

exclusive zones [53��]

Nup153 NUP153 Nuclear basket Mobile nucleoporin [46]

NUP153 mobility depends on ongoing

transcription [15]

Associates with active genes at the pore and

off-pore [39,40��]

Nup145N

Nup100

Nup116

Nup98 NUP98 Nuclear basket Mobile nucleoporin [14,46]

NUP98 mobility depends on ongoing

transcription [14,15]

Role in cancer [50]

Drosophila Nup98 associates with active genes in the

nuclear interior [47��,48��]

Nup100 associates with genes that are not highly

transcribed [28]

Nup116 associates with active genes [28]

Nup50 NUP50 Nuclear basket Mobile nucleoporin [46,83]

Drosophila Nup50 associates with active genes [48��]

Nup1 Nuclear basket Phosphorylation of Nup1 is required for peripheral

targeting of active INO1 and GAL1 genes [63]

Nup2 Nuclear basket Mobile nucleoporin [84]

Role in chromatin boundary [27]

Associates with active genes [28]

Nup60 Nuclear basket Associates with active genes [28]

Nup170 Nup154 NUP155 Core Drosophila Nup154 does not associate with

chromatin [48��]

Nic96 CG7262 NUP93 Core Nic96 associates with transcribed genes [28]

Mammalian NUP93 interacts with inactive

chromosomal regions [52]

Nsp1 Nup62 NUP62 Central channel Nsp1 associates with genes that are moderately

transcribed [28]

Drosophila Nup62 associates with active genes [48��]

Nup84 Nup107 NUP107 Core Nup84 associates with genes that are moderately

transcribed [28]

Nup84 subcomplex mediates transcriptional

activation [85]

Nup84 subcomplex acts as a coordinator of

SUMO-dependent repair pathway [74�].

Nup145C Nup96 NUP96 Nuclear ring Nup154c associates with genes that are not highly

transcribed [28]

Nup82 Nup88/Mbo NUP88 Cytoplasmic filaments Drosophila Nup88 associates with inactive

genes [47��]

Pom152 Gp210 GP210 Trans-membrane Dynamic nucleoporin [46]

Drosophila Gp210 does not associate with

chromatin [48��]
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that active genes associate with NPCs to increase the

efficiency of nuclear export of transcribed RNA [26].

Support for this hypothesis comes from several studies

done in S. cerevisiae. Among the first reports linking the

NPC to gene activity showed that nucleoporin Nup2p

functions as a boundary and blocks the spreading of

heterochromatin into a reporter gene. Importantly, the

insulation of the reporter gene from the surrounding

heterochromatin involved its physical tethering to the

NPC via Nup2 [27]. Later a genome-wide (ChIP-on-

chip) approach demonstrated that Nups associate prefer-

entially with transcriptionally active genes [28]. Nups

have also been shown to associate with promoters of

active genes [29]. Furthermore, a number of inducible

genes including INO1, GAL1, HXK1 or HSP104 are tar-

geted to the nuclear periphery (NPCs) upon activation

[28,30,31] (Figure 1). One explanation is that gene–NPC

association might be particularly important for inducible

genes such as galactose and heat shock controlled

promoters, which require rapid and high expression levels

and export, which could be facilitated by their positioning

closer to the NPCs. The chromatin remodeling complex

SAGA controls expression of stress inducible genes and is

connected to the mRNA export machinery by one of its

components Sus1 that binds to the NPC [32].

What is the functional significance of NPCs–gene inter-

action? In yeast, targeting of certain genes to the nuclear

periphery seems to involve nascent RNA transcripts

[33–35]. However, since GAL1 or HSP104 gene associ-

ation with the NPC can be disrupted without affecting

expression levels, perinuclear localization  of these genes

may be a consequence rather than a cause of transcrip-

tional activation [30,35]. Therefore, a model has been

proposed where the GAL1 gene is first activated and

then is ‘gated’ at the nuclear periphery [30]. In contrast,

targeting of the INO1 gene to the nuclear periphery is

not dependent on transcription [36], but is instead

348 Nucleus and gene expression
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Nuclear periphery as a platform for integrating multiple cellular pathways. Schematic representation depicting various roles associated with the

components of the nuclear periphery. Within the nuclear envelope, the NPCs are the major gateways for import and export between nucleus and

cytoplasm (1). Nuclear lamina harbors a zone for gene repression (2). In contrast, the NPC is associated with gene activation. Transcription regulation

can be mediated by both NPC bound pool (3) and soluble pools of nucleoporins (4). Components of the NPC have been shown to be involved in gene

looping (5). DNA repair pathways also converge at the nuclear pore complexes (6). Nuclear pore component TPR in involved in creating

heterochromatin exclusion zone (7).
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controlled by DNA ‘zip codes’ in the promoter that

enhance transcription [37��].

Given that most of the current evidence supporting ‘gene

gating’ has been obtained in budding yeast, it leads one to

question the evolutionary conservation of this phenom-

enon. In Drosophila the scenario appears more complex.

For example in Schneider (SL-2) cells, Hsp70 genes not

only localize nonrandomly at the nuclear periphery under

nonheat shock conditions but their position also remains

peripheral upon induction [38]. This peripheral localiz-

ation is lost upon Xma-2 or E(y)2 depletion, however,

Hsp70 mRNA levels are only reduced by 50% indicating

that the peripheral localization of Hsp70 genes is not

necessary for their expression. As further evidence for the

role of the nuclear pore components in the regulation of

active chromatin, Nup153, and Megator (Mtor) have been

found to copurify with MSL complex members, which

participate in the X chromosome transcriptional hyper-

activation during dosage compensation in D. melanogaster
[39]. The male X chromosome was shown to be enriched

in nucleoporin associated regions (NARs) that frequently

reside closer to the nuclear periphery [40��]. Future

studies will reveal how general functions of these proteins

impact on specific processes such as X chromosome

regulation.

In vertebrate cells, the DNaseI sensitive chromatin

localizes preferentially at the nuclear periphery [41].

More recently it was shown that at the time of activation,

the b globin locus is localized at the nuclear periphery

and only moves into the nuclear interior at a later time

point [42]. Support for this model comes from the study

of repositioning of the Th2-specific transcription factor

loci during Th1 differentiation [43]. Furthermore, the

IFNg locus is positioned at the nuclear periphery even

under induced conditions, arguing strongly that the

nuclear periphery cannot be an indiscriminately repres-

sive environment.

Role of nuclear pore components off the pore
The spatial restriction of chromatin movement in the

interphase nucleus [44,45] makes it highly unlikely that

all genes need to relocalize to the NPC to be activated.

Therefore, the coupling of transcription and export

might be conserved in metazoan Nups at intranuclear

active sites, where they can serve as a platform for

coregulated assembly of transcription machinery and

mRNA export factors. Support for this hypothesis comes

from the fact that some Nups are mobile and that the

dynamics of mammalian NUP98 and NUP153 is de-

pendent on active transcription [14,15,46], possibly

establishing a functional connection between sites of

production of mRNAs and NPCs. One important ques-

tion is therefore whether the chromatin–Nup interaction

reported in yeast to happen at the NE can also take place

in the nuclear interior.

Using polytene chromosome stainings, it has been reported

that various Drosophila Nups, including Nup98, Sec13,

Nup50, and mAb414-positive Nups, associate with active

loci that often localize in the nucleoplasm whereas Nup88

associates preferentially with inactive loci [47��,48��].
Furthermore, Nup153 and Mtor bind large domains

(NARs) of about 10–500 kb called NARs that demarcate

regions of open chromatin and active transcription [40��].
NARs were shown to be at the nuclear periphery as well

as in the nucleoplasm [40��]. These findings support

the idea of a NPC duality in gene regulation and

suggest that Nups could target different sets of genes

based on their transcriptional state [47��]. Since some Nups

are found associated with the pore or located in the

nucleoplasm, an alternative possibility is that different

pools of the same Nup may exhibit different functions

depending on their subnuclear location. Nup98 and Nup50

have been shown to be associated with both expressed

and moderately transcribed genes [48��]. The bound-

expressed genes generally localize inside the nucleus

whereas the bound-poorly expressed genes localize at

the periphery. Therefore, it has been proposed that nucleo-

plasmic NPC components activate the expression of

internally localized genes whereas DNA–NPC interaction

leads to gene silencing [48��]. These observations support

a role of Nups in nuclear compartmentalization for

gene expression regulation also in the nucleoplasm

(Figure 1).

Nucleoporins as regulators of the
transcription process
Several chromosomal translocations in acute myeloid

leukemia (AML) result in fusion proteins containing

the FG repeat part of NUP98 and members of the

homeobox transcription factor family such as HoxA9.

These oncogenic fusion proteins are able to activate or

repress target genes within the nucleoplasm [49–51].

Interestingly, a genome-wide study of NUP93-chromatin

association in vertebrate cells revealed changes in NPC–
chromatin interactions based on histone modification

status of chromatin [52].

The observations that the absence of some Nups such as

Nup98 and Sec13 abolishes the recruitment of RNA PolII

on target genes [47��], that the mobility of NUP98 and

NUP153 is closely associated with ongoing transcription

[14,15], and that loss of Nup153, Mtor or Nup98 affects

global gene expression [40��,48��] indicate that Nups

might function as direct or indirect regulators of the

transcription process possibly by delivering transcrip-

tional activators to genes that are expressed. Interestingly,

in mammalian cells, TPR, a component of the nuclear

basket, is required for the formation and maintenance of

heterochromatin exclusive zones (HEZs) that could

facilitate the access of large cargo, including transcription

or transport associated complexes, to the NPC [53��]
(Figure 1).
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Furthermore, Nups have been implicated in different

steps of transcription. For example, Nup98 and Sec13

recruitment precedes or coincides with RNA pol II

recruitment on target genes. Their down-regulation leads

to impairment in the recruitment of RNA pol II

suggesting that these Nups are involved in the early

stages of transcription initiation [47��]. This finding is

in agreement with a previous yeast study that reports

interaction between genes promoters and Nup2 and

propose that contact with pores may be a general feature

of gene activation [29]. Interestingly, Nup binding sites

have also been mapped on the body of active genes [28].

These studies suggest that Nups may also regulate tran-

scription elongation or the recycling of polymerases to the

promoters for reinitiation [47��]. Future work will be

instrumental in unraveling the possible molecular mech-

anisms by which Nups could influence transcription.

Nucleoporins facilitating transcriptional
memory
In yeast, formation of a gene loop between the 50 and 30

end of a gene has been shown to play an important role in

transcriptional regulation termed ‘transcriptional mem-

ory’ that enables past events to be ‘remembered’ [54,55].

Gene loops are dynamic structures whose formation is

dependent on active transcription and components of the

RNA processing machinery [54,55].

Tethering of genes at the NPC is reported to facilitate

transcriptional memory [56] (Figure 1). Interestingly,

Mlp1, a NPC component, plays a role in the maintenance

of the gene loop structure [57��]. Consistent with this,

Mlp1 displays a 50/30 distribution pattern on the HXK1
gene at time points coincident with gene loop formation

[57��]. Therefore, one possible mechanism of how NPC

localization could enhance gene expression is by inducing

or stabilizing loop formation [57��]. Looping appears not

to be a unique feature in yeast. The HIV provirus forms a

loop between the 50 long terminal repeat (LTR) and

poly(A) signal, also in a transcription-dependent manner

[58]. Dynamic promoter-terminator loops have been

described for the breast cancer BRCA1 gene [55], and

at the gene encoding the immunohistological marker

CD68 in mammalian cells [59]. In D. melanogaster, looping

of the HOX genes correlates with their repression and

involves CTCF [60]. It is tempting to speculate whether

Mtor (closest functional homologue of Mlp1) could also

enhance gene expression by contributing to gene looping

in Drosophila.

One player implicated in transcriptional memory is the

histone variant H2A.Z. This factor has been shown to be

required for the association of recently shut-off genes

with nuclear periphery indicating that the chromatin state

also plays a role in gene–NE interactions [36]. However, a

recent study attributes the H2AZ function in general

to GAL1 gene regulation rather than to transcriptional

memory [61]. Interestingly, a DNA sequence called

memory recruitment sequence (MRS) has been identified

in the promoter of the budding yeast INO1 gene which

mediates INO1 association with the NPC after transcrip-

tional shut-off. The MRS is required for the incorporation

of the histone variant H2A.Z, which is also necessary for

INO1 transcriptional memory [37��,62]. Future studies

will reveal whether sequence-dependent tethering could

also be utilized by genes in other organisms.

Factors contributing towards gene dynamics
Multiple factors have been implicated in the relocation of

active genes to the NPC, including transcriptional acti-

vators, mRNA processing and export factors, and distinct

NPC subunits. The mechanisms allowing gene move-

ment remain unclear. It is possible that intranuclear

chromatin-binding Nups shuttle between genomic sites

and the nuclear periphery thus acting as transport factors

to target genes from one location to another.

Progression through the cell cycle is an important factor

contributing to chromatin. In yeast active INO1 and GAL1
genes localize at the nuclear periphery during G1 and G2/

M, but move to the nucleoplasm during S phase. Further-

more, phosphorylation of Nup1, a component of the

NPC, by the cyclin dependent kinase (Cdk1) has shown

to be necessary for targeting active INO1 and GAL1 to the

nuclear periphery [63]. These findings suggest that post-

translational modification of Nups could also play an

important role for dynamic NPC–DNA interactions

during the cell cycle.

Nuclear actin and myosin, as well as myosin-like and

actin-related proteins have been proposed as candidates

that could contribute to the organization of transcription

in the interphase nucleus. Indeed, actin is found not only

as part of the filamentous cytoskeleton, but also in various

large chromatin modifying complexes that are exclusively

nuclear [64–66]. Furthermore, actin-related proteins are

also components of chromatin remodelers and are con-

served from yeast to human [67]. Interestingly, actin-

related protein Arp6, which is also a component of the

chromatin remodeling complex SWR1, was recently

shown to mediate localization of ribosomal protein genes

to the nuclear periphery [68].

Interestingly, a recent genetic screen performed to com-

prehensively assess the role of essential factors in NPC

localization, structure, and assembly into the NE has led

to the identification of multiple components of the RSC

chromatin remodeling complex including the essential

ATPase catalytic subunits Sth1, RSC8, RSC58, and ARP9

in S. cerevisiae [69]. Consistently, several earlier reports

also observed a link between NPCs and RSC [70,71].

These studies not only provide a functional link between

the chromatin remodeling complexes and the nuclear

350 Nucleus and gene expression
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periphery but also highlight the complexity and connec-

tivity between different pathways leading to gene regu-

lation.

Nuclear periphery playing a role in genome
stability
Repair of chromosomal breaks induced due to environ-

mental insult or endogenous cellular metabolism is cen-

tral to cell survival and genome integrity. Non-

homologous end joining (NHEJ) is one of the major

cellular repair pathways that eliminate chromosome

double strand breaks (DSBs). Interestingly, mutations

in components of a Nup subcomplex (Nup84, Nup120,

Nup133, and Nup60) rendered yeast cells hypersensitive

to DNA damaging agents and loss of the Nup84 complex

was shown to be synthetic lethal with mutations that

impair homologous recombination [72,73,74�,75,76].

Furthermore, it was recently demonstrated that damaged

DNA is recruited to the nuclear pore to be repaired using

a SUMO-dependent E3 ligase SlX5/Slx8 [74�].

Telomeres are unique nucleo-protein structures that

facilitate replication at the ends of linear eukaryotic

chromosomes and protect the ends against untimely ero-

sion and recognition by the DNA damage machinery.

Telomere length decreases each generation owing to the

inherent inability of the conventional replication machin-

ery to fully replicate the end of chromosomal DNA. The

erosion of telomeric DNA resulting from replication can

be compensated for by a variety of mechanisms involving

recombination and telomerase-catalysed reverse tran-

scription. Recent data indicate that the NE protects

telomeric repeats from recombination [77,78]. Further-

more, it has been shown that eroded telomeres change

their subnuclear location to the nuclear pore during DNA

damage response [79]. All together these studies highlight

that components of the nuclear periphery not only play a

role in transcription control but are also implicated in

genome integrity (Figure 1).

Concluding remarks
Recent progress has shed new light on the role of nuclear

periphery components beyond nucleocytoplasmic trans-

port. It appears that the nuclear pore components play an

integral role in nuclear architecture, gene expression and

genome stability by providing a supporting platform for

tethering various molecules. This multifunctional plat-

form serves to ensure the efficient control of gene expres-

sion at the transcriptional and post-transcriptional levels.

Future studies will provide a better understanding of how

components of the NPC execute their function on and off

the pores.
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