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a  b  s  t  r  a  c  t

Carbon  monoxide  (CO)  is an  endogenous  gaseous  transmitter  that  exerts  antiproliferative  effects  in  many
cell types,  but effects  of  CO  on the translational  machinery  are  not  described.  We  examined  the effects  of
the carbon  monoxide  releasing  molecule-2  (CORM-2)  on  critical  steps  in  translational  signaling  and  global
protein  synthesis  in pancreatic  stellate  cells  (PSCs),  the  most  prominent  collagen-producing  cells  in the
pancreas,  whose  activation  is  associated  with  pancreatic  fibrosis.  PSCs  were  isolated  from  rat  pancreatic
tissue  and  incubated  with  CORM-2.  CORM-2  prevented  the decrease  in the phosphorylation  of  eukary-
otic elongation  factor  2 (eEF2)  caused  by serum.  By  contrast,  the  activation  dependent  phosphorylation
of  initiation  factor  4E-binding  protein  1 (4E-BP1)  was  inhibited  by CORM-2  treatment.  The  phosphor-
ylation  of  eukaryotic  initiation  factor  2�  (eIF2�)  and  eukaryotic  initiation  factor  4E  (eIF4E)  were  not
affected  by  CORM-2  treatment.  In consequence,  CORM-2  mediated  eEF2  phosphorylation  and  inactiva-
tion  of  4E-BP1  suppressed  global  protein  synthesis.  These  observations  were  associated  with  inhibition
of  phosphatidylinositol  3-kinase-Akt-mammalian  target  of  rapamycin  (PI3K-Akt-mTOR)  signaling  and
increased  intracellular  calcium  and  cAMP  levels.  The  CORM-2  mediated  inhibition  of  protein  synthesis

resulted  in  downregulation  of  cyclin  D1  and  cyclin  E  expression,  a subsequent  decline  in  the  phosphor-
ylation  of  the  retinoblastoma  tumor  suppressor  protein  (Rb)  and  cell  growth  arrest  at  the  G0/G1 phase
checkpoint  of the  cell  cycle.  Our results  suggest  the  therapeutic  application  of  CO  releasing  molecules
such  as  CORM-2  for the  treatment  of  fibrosis,  inflammation,  cancer,  or other  pathologic  states  associated
with  excessive  protein  synthesis  or hyperproliferation.  However,  prolonged  exogenous  application  of  CO
might  also  have  negative  effects  on cellular  protein  homeostasis.
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. Introduction

Carbon monoxide (CO) is a freely diffusible gas that acts as a
hysiological mediator of many biological and cellular processes,

ncluding angiogenesis and hormone secretion (Lundquist et al.,
003; Otterbein et al., 2003; Ryter et al., 2006). Endogenous CO is
eleased during the catabolism of heme by heme oxygenase (HO)
nzymes (Tenhunen et al., 1968). In the past decade, the therapeutic
otential of CO has been increasingly recognized. CO exerts potent
eneficial effects in animal models of inflammatory or oxidative
issue injury, organ transplantation and fibrosis (Motterlini and
tterbein, 2010). CO-releasing molecules (CORMs) are metal car-
Please cite this article in press as: Schwer CI, et al. Carbon monoxide releasin
of  eukaryotic elongation factor eEF2. Int J Biochem Cell Biol (2012), http://

onyl compounds capable of delivering defined amounts of CO into
ellular systems, thereby reproducing the biological effects of CO
erived from HO activity (Motterlini et al., 2002; Sawle et al., 2006).

∗ Corresponding author. Tel.: +49 761 270 23060; fax: +49 761 270 23960.
E-mail address: christian.schwer@uniklinik-freiburg.de (C.I. Schwer).
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CORMs have shown bactericidal (Desmard et al., 2009), antiinflam- 

matory (Bani-Hani et al., 2006; Sawle et al., 2005), antiapoptotic 

(Li et al., 2006; Schallner et al., 2011), and antiproliferative effects 

(Schwer et al., 2010; Taille et al., 2005) in many cell types. 

Pancreatic fibrosis is a common histopathological feature in 

chronic pancreatitis and pancreatic cancer. It is now generally 

accepted that pancreatic stellate cells (PSCs) play a crucial role 

in the development of fibrosis (Apte et al., 1998; Bachem et al., 

1998; Omary et al., 2007). In response to profibrogenic stimuli, 

PSCs undergo transdifferentiation from quiescent phenotypes into 

highly proliferative myofibroblast-like cells, which synthesize and 

secrete increased amounts of the extracellular matrix proteins 

that comprise fibrous tissue (Apte et al., 2004; Apte and Wilson, 

2004). Therefore, compounds that inhibit PSC proliferation or sup-
press protein synthesis in activated PSCs may  have the potential 
g molecule-2 CORM-2 represses global protein synthesis by inhibition
dx.doi.org/10.1016/j.biocel.2012.09.020

to become a new approach for the treatment of pancreatic fibrosis 50

(Bulow et al., 2007; Omary et al., 2007). 51

The acute phase of mRNA translation in mammalian cells 52

in response to mitogens is regulated through changes in the 53

dx.doi.org/10.1016/j.biocel.2012.09.020
dx.doi.org/10.1016/j.biocel.2012.09.020
http://www.sciencedirect.com/science/journal/13572725
http://www.elsevier.com/locate/biocel
mailto:christian.schwer@uniklinik-freiburg.de
dx.doi.org/10.1016/j.biocel.2012.09.020
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hosphorylation states of eukaryotic initiation factors (eIFs) and
ukaryotic elongation factors (eEFs) (Diggle et al., 1998; Kimball,
999; Proud et al., 2001). eEF2 is a monomeric 100 kDa protein that
ediates the translocation step in peptide-chain elongation by pro-
oting transfer of peptidyl-tRNA from the A site to the P site on the

ibosome (Proud, 1994, 2006; Proud and Denton, 1997; Ryazanov
t al., 1988). Phosphorylation of eEF2 at threonine 56 (Thr56) by
EF2 kinase interferes with its ability to bind the ribosome, and thus
nhibits peptide-chain elongation (Browne and Proud, 2002, 2004).
EF2 kinase activity is dependent on calcium (Ca2+) ions, calmod-
lin, and has been reported to be regulated by cyclic adenosine
onophosphate (cAMP) (Diggle et al., 1998; Hovland et al., 1999),
itogen-activated protein kinase (MAPK) (Wang et al., 2001) and
ammalian target of rapamycin (mTOR) (Browne and Proud, 2004;

roud, 2004) signaling pathways.
The effect of CORMs or CO on components of the translational

achinery or global protein synthesis has not been elucidated yet.
n this study we characterized the effect of CORM-2 on compo-
ents of the translational machinery, we explored whether CORM-2
locks global protein synthesis in PSCs, and revealed regulatory
echanisms and consequences.

. Materials and methods

.1. Isolation and culture of PSCs

Male Wistar rats (Charles River, Sulzfeld, Germany), weighing
etween 250 and 300 g, were used for all experiments. The exper-

mental protocol was approved by the Local Animal Care and Use
ommittee, and all animals were housed in accordance with the
uidelines from the American Association of Laboratory Animal
are.

Primary rat PSCs were isolated according to the procedure
escribed by Shinji et al. (2002).  Briefly, the dissected pancreas
as minced with scissors and digested with 0.03% collagenase P

Roche Diagnostics, Mannheim, Germany) in HBSS (Hanks’ buffered
alt solution) (Invitrogen, Karlsruhe, Germany). The resultant sus-
ension of cells was centrifuged in a 13.2% iohexol (Nycodenz)
Nycomed, Oslo, Norway) gradient for 20 min  at 1400 × g. Stel-
ate cells separated into a fuzzy band just above the interface of
he iohexol solution and the aqueous buffer. This band was  har-
ested, and the cells were washed and cultured in Iscove’s modified
ulbecco’s medium (IMDM) containing 10% fetal calf serum (FCS),

 mM glutamine, and antibiotics (penicillin 100 U/ml, streptomycin
00 mg/ml) (all from Invitrogen). Cell purity was determined by
itamin A autofluorescence and was always higher than 90%. After
eaching confluency, cells were harvested and seeded in a density
f 1 × 105 cells/ml.

.2. Treatment of cells

Experiments were performed using PSCs in passages 2–4. PSCs
ere incubated in serum-free medium for 24 h before addition of
ORM-2 (100 �M;  Sigma, Deisenhofen, Germany), ruthenium(III)
hloride (RuCl3; 100 �M;  Sigma), the mTOR inhibitor rapamycin
100 nM;  Sigma), the phosphatidylinositol 3-kinase (PI3K) inhibitor
Y294002 (10 �M;  Calbiochem, Bad Soden, Germany), or the mito-
en/extracellular signal-regulated kinase (MEK) inhibitor PD98059
20 �M;  Calbiochem). All reagents were dissolved in dimethyl sulf-
xide (DMSO). Control cells were treated with similar amounts of
he solvent.
Please cite this article in press as: Schwer CI, et al. Carbon monoxide releasin
of  eukaryotic elongation factor eEF2. Int J Biochem Cell Biol (2012), http://

.3. Western blot analysis

Total cell lysates were prepared in radioimmunoprecipita-
ion assay buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 1% Nonidet
 PRESS
hemistry & Cell Biology xxx (2012) xxx– xxx

P-40, 0.5% sodium deoxycholate, 0.1% SDS). The protein content 

of the cell lysates was  determined by the BCA protein assay kit 

(Thermo Fisher Scientific; Rockford, IL, USA) and equal amounts 

of proteins per sample were loaded on SDS-polyacrylamide gels, 

separated by electrophoresis and transferred to a polyvinylidene 

fluoride membrane (Millipore, Billerica, MA,  USA). Membranes 

were blocked with 5% skim milk in Tween-20/phosphate buffered 

saline and incubated with antibodies raised against phospho-eEF2 

(Thr56), total-eEF2, phospho-eIF2� (Ser51), total-eIF2�,  phospho- 

eIF4E (Ser209), total-eIF4E, phospho-4E-BP1 (Ser65), total-4E-BP1, 

phospho-Akt (Ser473), total-Akt, phospho-p70 S6K (Thr389), 

total-p70 S6K, phospho-S6 Ribosomal Protein (Ser235/236), 

total-S6 Ribosomal Protein, phospho-ERK1/2 (Thr202/Tyr204), 

total-ERK1/2, phospho-p90 RSK (Thr359/Ser363), total-p90 RSK, 

phospho-AMPK� (Thr172), total-AMPK�, phospho-Rb (Ser608, 

Ser795, and Ser807/811) and total-Rb (all Cell Signaling Technol-
ogy, Danvers, MA,  USA) or cyclin D1 and cyclin E (Santa Cruz
Biotechnology, Santa Cruz, CA, USA) overnight at 4 ◦C. Specific 

protein bands were visualized using horseradish peroxidase- 

conjugated anti-rabbit or anti-mouse IgGs (GE  Healthcare, Little
Chalfont, Buckinghamshire, UK) and the Enhanced Chemi- 

luminescence Kit (GE Healthcare). 

2.4. Measurement of intracellular Ca2+ concentration ([Ca2+]i) 

[Ca2+]i was  measured in cells using the Fura 2-AM assay (Cal- 

biochem). Briefly, cultured cells were starved from serum overnight 

and incubated with 1 �M Fura2-AM for 30 min  at 37 ◦C followed 

by three washes with calcium-free HBSS to remove any extracel- 

lular dye. The fluorescence value was  measured at 510 nm and 

an excitation wavelength of 340 nm by a TECAN infinite M200 

spectrofluorophotometer (Tecan, Crailsheim, Germany). To detect 

the effect of CORM-2 on resting [Ca2+]i, serum-starved PSCs were 

treated with vehicle (0.1% DMSO) or 100 �M CORM-2 for the indi- 

cated time periods before Fura 2-AM loading. 

2.5. Determination of intracellular cAMP concentration

The effect of CORM-2 on intracellular cAMP concentration was
determined with the Cyclic AMP  XP® Assay Kit (Cell Signaling). PSCs 

were plated in 96-well plates (1 × 104 cells/well) and incubated 

overnight in IMDM containing 10% FCS. Cells were rinsed with 

200 �l warm PBS before test compounds in serum-free medium 

were added. Cell lysis and calculation of absolute amounts of cAMP 

was performed according to the manufacturer’s instructions. 

2.6. Metabolic labeling 

PSCs were seeded at a density of 2 × 105 cells/ml in 24-well 

tissue culture plates in 10% FCS/DMEM and grown to 80% con- 

fluence. Then cells were serum-starved for 24 h and treated with 

100 �M CORM-2 or 2.5 �g/ml cycloheximide (CHX) for 8 h. Subse- 

quently, cell culture supernatants were replaced by 500 �l/well of 

serum-free DMEM deficient in cold methionine (MP  Biomedicals, 

Solon, OH, USA) for 1 h. Cultures were then pulse-labeled for 1 h 

with 50 �Ci of [35S]-methionine (PerkinElmer, Rodgau, Germany), 

washed with ice-cold PBS and lysed by addition of 200 �l 1× SDS 

sample buffer [250 mM  Tris (pH 6.8), 10% SDS, 500 mM dithio- 

threitol, 50% glycerol, and 0.5% bromphenol blue]. Proteins were 

denatured by boiling for 5 min, and [S35]-methionine incorpora- 

tion into proteins was analyzed by 10% SDS-PAGE and X-ray film 
g molecule-2 CORM-2 represses global protein synthesis by inhibition
dx.doi.org/10.1016/j.biocel.2012.09.020

autoradiography. To demonstrate equal loading, gels were stained 168

for 2 h in 0.06% Coomassie G250 and 10% acetic acid after fixing 169

the separated proteins in 25% isopropanol and 10% acetic acid for 170

60 min. Subsequently, gels were destained for in 10% acetic acid for 171

dx.doi.org/10.1016/j.biocel.2012.09.020
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 h and dried on a 3 MM Whatman paper for 2 h at 80 ◦C before
xposure to X-ray films (GE Healthcare).

.7. Ribosome profiles

Ribosome profiles were performed as described previously
Jaiswal et al., 2011). Briefly, quiescent PSCs were pretreated with
00 �M CORM-2 for 30 min  followed by a 8-h stimulation with 10%
CS. 20 min  before trypsinization, 100 �g/ml CHX was added. Cells
ere collected and resuspended in 2× the volume of the cell pel-

et in lysis buffer containing 50 mM HEPES-KOH, pH 7.4, 1 mM Mg
cetate, 1 mM PMSF, 1× PIC. Mechanical cell disruption was per-
ormed by vortexing cells in the presence of 1× the volume of the
ell pellet of glas beads six times for 20 s at 4 ◦C, followed by a 40 s
nterval on ice. The supernatant was collected after a clarifying spin
t 2500 × g for 10 min. Supernatant corresponding to 10 units of
ptical density at 260 nm (OD260) were loaded on a linear 15–55%
ucrose gradient. After centrifugation at 200,000 × g for 2.5 h at
◦C, gradients were fractionated from top to bottom with a density
radient fractionator monitoring A254 (Teledyne ISCO, Lincoln, NE,
SA).

.8. Detection of cyclin D1 and cyclin E

PSCs were seeded at a density of 2 × 105 cells/ml in 24-well
issue culture wells and were starved from serum for 24 h. Subse-
uently, cells were incubated in 500 �l/well of serum-free DMEM
eficient in cold methionine for 1 h prior to the addition of 100 �M
ORM-2 or vehicle (0.1% DMSO). After 30 min, cells were stimu-

ated with 10% FCS for 30 min  before they were pulse-labeled with
0 �Ci/well of [35S]-methionine (PerkinElmer) for 6 h. Then, PSCs
ere washed with ice-cold PBS and lysed in 200 �l of radioim-
unoprecipitation assay buffer (50 mM Tris, pH 7.5, 150 mM NaCl,

% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS, 2 mM AEBSF,
.6 �M Aprotinin, 80 �M Bestatin, 28 �M E-64, 40 �M Leupeptin,
0 �M Pepstatin, 4 mM PMSF, 2 mM sodium orthovanadate). After
entrifugation at 14,000 × g, supernatants were incubated with

 �g of anti-cyclin D1 or anti-cyclin E antibodies and 40 �l Protein
/G-plus agarose slurry (Santa Cruz) at 4 ◦C on a wheel over night.
rotein beads were washed three times with 500 �l radioimmuno-
recipitation assay buffer, boiled in 40 �l of 2× SDS sample buffer,
nd resolved on 13% SDS-PAGE gels. Separated proteins were fixed
n 25% isopropanol, 10% acetic acid for 60 min  and dried on a 3MM

hatman paper for 2 h at 80 ◦C before exposure to X-ray films.

.9. Real-time polymerase chain reaction

RNA was isolated using the RNeasy Mini Kit (Qiagen, Erkrath,
ermany). Complementary DNA (cDNA) was synthesized from

 �g of total RNA using cDNA reverse transcription kit (Applied
iosystems, Inc, Foster City, Calif) according to the manufac-
urer’s protocol. The resulting cDNA was used in semiquantitative
eal-time polymerase chain reaction analysis. Reactions were per-
ormed in duplicate for each sample on an ABI Prism 7000 (Applied
iosystems). All primer/probes and mixtures were purchased from
pplied Biosystems; Taq Man  probe rat cyclin D1 (Ccnd1;  assay ID:
n00432360 m1), and Taq Man  probe rat cyclin E (Ccne1;  assay ID:
n01457762 m1).

Parameters for quantitative PCR were as follows: 10 min  at
5 ◦C, followed by 40 cycles of amplification for 15 s at 95 ◦C and

 min  at 60 ◦C. As endogenous control, GAPDH gene expression
Please cite this article in press as: Schwer CI, et al. Carbon monoxide releasin
of  eukaryotic elongation factor eEF2. Int J Biochem Cell Biol (2012), http://

as measured for each probe using a VIC/MGBYlabeled probe (rat:
352338E-0703008). The obtained data from GAPDH were used to
tandardize the sample variation in the amount of input cDNA by
he ��CT method.
 PRESS
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2.10. Design of small interfering RNA and transfection of PSCs 

PSCs (1 × 105/ml) were transfected with 100 nM hmox1 4 small 

interfering RNA (siRNA) directed against hmox1-mRNA: sense 

(5′ > 3′) r(AAA UGG CAU UAU CUA AUA A)dTdT, antisense r(UUA 

UUA GAU AAU GCC AUU U)dAdT, or AllStars nonsilencing siRNA 

(both obtained from QIAGEN GmbH) using HiPerFect transfection 

reagent (QIAGEN GmbH) according to the manufacturer’s recom- 

mendations. Twelve hours after transfection, the medium was  

changed and PSCs were incubated in serum-free IMDM  for 24 h 

before treatment. 

2.11. Cell cycle analysis by flow cytometry 

Serum-starved PSCs (80% density) were left untreated or were 

stimulated with 10% FCS for 12 h in the presence of vehicle (0.1% 

DMSO) or 100 �M of CORM-2. Cells were washed twice in PBS and 

harvested by trypsin digestion (0.5% trypsin–0.2% EDTA). Prepara- 

tion of nuclei and propidium iodide staining was  performed using 

the CycleTESTTM PLUS DNA Reagent Kit (BD Biosciences, Heidel- 

berg, Germany) according to the manufacturer’s recommendations 

and samples were analyzed on a FACS Calibur (BD Biosciences) 

using both CELLQuestTM (BD Biosciences) and FlowJoTM softwares 

(FlowJo, Ashland, OR, USA). 

2.12. Statistical analysis 

Results are expressed as means ± SEM for the indicated num- 

ber of separate cell preparations per experimental protocol. Unless 

indicated otherwise, data were analyzed using the one-way ANOVA 

followed by the Student–Newman–Keuls post hoc test. Data from 

[Ca2+]i or cAMP assays were analyzed by two-way ANOVA, followed 

by the Bonferroni’s post hoc test. Differences between groups were 

considered to be significant at p < 0.05. Statistical analyzes were 

carried out using the Prism software package (GraphPad Software 

Inc., La Jolla, CA, USA). 

3. Results 

3.1. CORM-2 induces posttranslational modification of regulators 

of the translational machinery in PSCs 

Translation in mammalian cells is regulated by phosphorylation 

of various translation initiation and elongation factors (Proud and 

Denton, 1997; Rhoads et al., 1999; Wang et al., 2001). To evaluate 

whether CO affects components of the translational machinery in 

PSCs, cells were stimulated with 10% FCS in presence of the CO- 

releasing molecule CORM-2. Serum-starved PSCs displayed strong 

phosphorylation of eukaryotic translation elongation factor eEF2 

on Thr56 and eukaryotic translation initiation factor eIF2� on 

Ser51, whereas only low amounts of phosphorylated eukaryotic 

initiation factor eIF4E (Ser209) or initiation factor 4E binding pro- 

tein 1 (Ser65) could be observed (Fig. 1). Treatment of PSCs with 10% 

FCS resulted in a decrease in the level of both phosphorylated eEF2 

and eIF2� and an increase in the level of phosphorylated eIF4E and 

4E-BP1. Compared to cells incubated with 10% FCS alone, the addi- 

tion of CORM-2 had no effect on phosphorylation of eIF2� or eIF4E. 

However, CORM-2 prevented the decrease of phosphorylated eEF2 
g molecule-2 CORM-2 represses global protein synthesis by inhibition
dx.doi.org/10.1016/j.biocel.2012.09.020

caused by serum and markedly reduced the level of phosphorylated 281

4E-BP1. These effects occur at the posttranslational level, since total 282

amounts of eEF2 or 4E-BP1 protein were not affected by CORM-2 283

treatment. 284

dx.doi.org/10.1016/j.biocel.2012.09.020
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Fig. 1. CORM-2 modulates phosphorylation of translational regulators in PSCs.
Serum-starved PSCs were incubated with CORM-2 (100 �M)  or vehicle (DMSO) for
30 min followed by a 8-h stimulation with 10% FCS. Phosphorylation of transla-
tional regulators eEF2, eIF2�, eIF4E and 4E-BP1 was  analyzed by immunoblotting.
To demonstrate equal loading, membranes were stripped and reprobed with anti-
t
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.2. Time- and dose-dependent effect of CORM-2 on eEF2
hosphorylation

The influence of CORM-2 on the posttranslational modification
f eEF2 was analyzed by a time and dose kinetic. PSCs were incu-
ated with CORM-2 (100 �M)  for increasing time periods (Fig. 2A).
onsistent with the data shown in Fig. 1, CORM-2 prevented FCS-

nduced eEF2 dephosphorylation but did not affect total eEF2 levels.
his effect was time-dependent and already apparent after 1 h
f treatment. It peaked at 8 h and remained elevated for at least
4 h. Exposure of PSCs for 8 h to various concentrations of CORM-

 (0–100 �M)  resulted in a concentration-dependent increase in
hospho-eEF2 (Fig. 2B). The negative control RuCl3, a CORM-2
nalog unable to release CO, at 100 �M did not affect eEF2 phos-
horylation (Fig. 2C). The concentration of CORM-2 that caused the
trongest increase in eEF2-phosphorylation (100 �M)  was chosen
or further experiments. Toxicity studies revealed that CORM-2 at
00 �M did not cause any cellular damage whereas concentrations
reater than 200 �M led to significant cell injury as measured by
n LDH-release cytotoxicity assay (Schwer et al., 2010).

.3. CORM-2 inhibits PI3K-Akt-mTOR but not ERK1/2 signaling in
SCs

eEF2 kinase is the only known kinase to phosphorylate eEF2 at
hr56 (Browne and Proud, 2002). eEF2 kinase itself is regulated by
umerous mechanisms in the eukaryotic cell (Kaul et al., 2011). The
hosphorylation of eEF2 kinase by p70 S6K and p90 RSK results

n the inactivation of eEF2 kinase, which facilitates the dephos-
horylation of eEF2, and thus promotes translation (Frodin and
Please cite this article in press as: Schwer CI, et al. Carbon monoxide releasin
of  eukaryotic elongation factor eEF2. Int J Biochem Cell Biol (2012), http://

ammeltoft, 1999; Hovland et al., 1999; Wang et al., 2001). While
70 S6K is under the control of mTOR, p90 RSK is activated via
he ERK1/2 signaling pathway in response to many growth factors,
ormones and neurotransmitters (Frodin and Gammeltoft, 1999).
followed by a 8-h stimulation with 10% FCS. p-eEF2 and eEF2 in cell lysates were
analyzed by immunoblotting. The data shown are representative for the results of
experiments with n = 3 separate cell preparations.

To assess the role of the PI3K-Akt-mTOR and ERK1/2 signaling 

pathways in CORM-2 mediated effects, the PI3K inhibitor 

LY294002, the mTOR inhibitor rapamycin, and the ERK1/2 inhibitor 

PD98059 were added to PSCs before they were incubated with 

CORM-2 and 10% FCS. As shown in Fig. 3, CORM-2 (A, B and C, 

column 3), LY294002 (A, column 4) and rapamycin (B, column 4) 

prevented the decrease of phosphorylated eEF2 caused by serum. 

By contrast, the levels of phosphorylated Akt, p70 S6K and 4E-BP1 

were reduced in both CORM-2 and LY294002 treated cells (Fig. 3A). 

Rapamycin only slightly decreased the phosphorylation of Akt, but 

did cause the complete dephosphorylation of 4E-BP1, p70 S6k and 

S6, another target of mTORC1 (Fig. 3B, column 4). Finally, CORM-  

2 attenuated FCS-induced phosphorylation of S6 (Fig. 3B, column 

3). These data suggest that CORM-2 acts as an inhibitor of the 

PI3K-Akt-mTOR signaling pathway in PSCs. As expected, the FCS- 

induced phosphorylation of ERK1/2 was prevented in presence of 

PD98059 (Fig. 3C, column 4). The level of phosphorylated eEF2 was 

increased in CORM-2 but not PD98059 treated cells. By contrast, 

CORM-2 treatment had no significant effect on the phosphorylation 

of ERK1/2 or p90 RSK (Fig. 3C, column 3), demonstrating that mod- 

ification of eEF2 by CORM-2 is independent of the ERK1/2 signaling 

pathway. 

3.4. Increased phosphorylation of eEF2 correlates with profound
inhibition of protein synthesis in PSCs

Posttranslational phosphorylation of eEF2 and 4E-BP1 has been
g molecule-2 CORM-2 represses global protein synthesis by inhibition
dx.doi.org/10.1016/j.biocel.2012.09.020

associated with the repression of global protein synthesis (Browne 341

and Proud, 2002). To investigate whether CORM-2 affects transla- 342

tion in PSCs, we  measured the incorporation of [S35]-methionine 343

into newly synthesized proteins (Fig. 4). Preliminary experiments 344

dx.doi.org/10.1016/j.biocel.2012.09.020
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Fig. 3. CORM-2 inhibits PI3K-Akt-mTOR, but not ERK1/2-dependent pathways
in  PSCs. Serum-starved PSCs were pretreated with CORM-2 (100 �M), LY294002
(10  �M;  A), rapamycin (100 nM;  B) or PD98059 (10 �M;  C) for 30 min. (A) Repre-
sentative Western blot analyses of phospho-eEF2 (p-eEF2), phospho-Akt (p-Akt),
phospho-p70 S6K (p-p70 S6K), and phospho-4E-BP1 (p-4E-BP1) expression after
an  8-h stimulation with 10% FCS. (B) Representative Western blot analyses of
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demonstrated a linear increase in [S35]-methionine incorpora- 

tion into proteins in a time-dependent manner, when PSCs were
metabolically labeled for 10 min  to 6 h (data not shown). Admin- 

istration of CORM-2 resulted in a significant reduction in protein 

synthesis by 51% (48.9 ± 8.8%), after labeling PSCs for 1 h com- 

pared to vehicle treated controls (Fig. 4A). Translational inhibition 

by CORM-2 was more pronounced than using the translational
repressor cycloheximide that caused a 36% (64.1 ± 11.9%) decrease
in global translational activity (Fig. 4B). Loading of equal amounts
of total protein in each lane was  verified by Coomassie Blue G- 

250 staining of gels before autoradiography (data not shown). To 

determine the rate limiting step in the inhibition of global pro- 

tein synthesis by CORM-2, the association of ribosomes to mRNA
was assessed by polysome fractionation. The absence of polysomes
would argue for inhibition of translational initiation by CORM-2. 

However, we  observed that pretreatment of PSCs with CORM-2 did 

not prevent the subsequent formation of polysomes after adding
10% FCS (Fig. 4C, fractions 8–20), although peaks in fractions 8–14 

seem to be less distinguished in CORM-2 treated cells. 

3.5. CORM-2 increases intracellular calcium [Ca2+]i and cAMP 

levels in PSCs 

Phosphorylation of eEF2 at Thr56 by eEF2 kinase is stimulated 

by calcium/calmodulin (Nairn et al., 1985), increased cAMP levels 

(Diggle et al., 1998) and elevated AMP/ATP ratios (Thomson et al., 

2008). To determine whether CORM-2 impairs intracellular calcium 

homeostasis, [Ca2+]i levels were measured by Fura 2-AM labeling 

in PSCs. Our results indicate that CORM-2 significantly increases 

cytoplasmatic calcium in a time-dependent manner (Fig. 5A). 

Peak emission levels of calcium-bound Fura-2 were determined at 

30 min, but were declining to basal levels within 1 h. The observed 

short-termed and early [Ca2+]i burst induced by CORM-2 might be 

due to the fact that the CO-release from CORM-2 once added to 

physiological solutions is nearly instantaneous (Motterlini et al., 

2002). 

Next we examined the effect of CORM-2 on intracellular 

cAMP levels by a competition enzyme-linked cAMP immunoassay 

(Fig. 5B). Cells treated with cholera toxin, a stimulator of adeny- 

late cyclase, served as control and demonstrated a progressive 

increase in intracellular cAMP-mobilization. CORM-2 also induced
a significant and time-dependent increase in intracellular cAMP, 

reaching maximum levels at 15 min  of treatment. In this phase 

CORM-2 mediated effects were comparable to the biological activ- 

ity of cholera toxin. Afterwards cAMP levels declined in CORM-2 

treated PSCs, an observation that might again be attributed to the 

short termed release of CO by CORM-2 (Motterlini et al., 2002). 

CO causes impaired oxygen delivery and utilization at the cellu- 

lar level. CO inhibits cytochrome c oxidase, a rate-limiting enzyme 

within the respiratory electron transport chain of mitochondria, 

by competing with an oxygen-binding site (Alonso et al., 2003; 

Zuckerbraun et al., 2007). This affects the AMP/ATP ratio and con- 

sequently AMP-activated protein kinase (AMPK), a cellular energy 

sensor, is induced. AMPK blocks protein synthesis by inhibition of 
g molecule-2 CORM-2 represses global protein synthesis by inhibition
dx.doi.org/10.1016/j.biocel.2012.09.020

eEF2K-dependent eEF2 phosphorylation (Carling et al., 2011; Zhang 397

et al., 2007). Therefore we speculated that CO liberated from CORM- 398

2 might inhibit the eEF2 kinase/eEF2 pathway via activation of 399

AMPK. The induction of Thr172 auto-phosphorylation within the 400

phospho-eEF2 (p-eEF2), phospho-Akt (p-Akt), phospho-p70 S6K (p-p70 S6K),
phospho-S6 Ribosomal Protein (p-S6), and phospho-4E-BP1 (p-4E-BP1) expression
after an 8-h stimulation with 10% FCS. (C) Representative Western blot analyses of
phospho-eEF2 (p-eEF2), phospho-ERK1/2 (p-ERK1/2), and phospho-p90 RSK (p-p90
RSK) expression after an 8-h stimulation with 10% FCS. To demonstrate equal load-
ing, blots were reprobed with antibodes to detect total amounts of eEF2, Akt, p70
S6K, S6 Ribosomal Protein, 4E-BP1, ERK1/2 and p90 RSK.

dx.doi.org/10.1016/j.biocel.2012.09.020
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Fig. 4. CORM-2 represses protein synthesis in PSCs. Serum-starved PSCs were preincubated with vehicle (DMSO), CORM-2 (100 �M), or cycloheximide (CHX; 2.5 �g/ml)
for  30 min  followed by a 8-h stimulation with 10% FCS. To measure protein synthesis, cells were pulse-labeled with 5 �Ci/well of [35S]-methionine for 1 h and cell lysates
were  subjected to SDS-PAGE and X-ray autoradiography (A). [35S]-methionine incorporation was  statistically analyzed (B) and presented as relative densitometric units with
t ient v
p  10% F
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he  mean ± SEM (n = 3). *p < 0.05 versus control group (Vehicle). In (C), sucrose grad
erformed. The UV-absorption profiles of the gradients using PSCs, pretreated with
f  10% FCS (right profile) are shown. The peaks corresponding to 40S, 60S, and 80S 

ctivation loop of AMPK was used as a marker for AMPK activa-
ion. However, our results demonstrate that CORM-2 had no effect
n the level of phosphorylated AMPK� in PSCs (Fig. 5C, compare
ands 1 and 3 or bands 2 and 4). In contrast to CORM-2, the AMPK
ctivator phenformin potently induced phosphorylation of AMPK�
t Thr172, demonstrating the inducibility of AMPK in PSCs (Fig. 5C).

.6. HO-1 is not involved in the effect of CORM-2 on eEF2
hosphorylation

To elucidate a possible involvement of HO-1 in CORM-2
ediated effects, we examined the effects of HO inhibition

n eEF2 phosphorylation. In line with data from our previous
eport (Schwer et al., 2010), treatment of PSCs with CORM-2
ed to a profound increase in HO-1 protein expression (Fig. 6).
Please cite this article in press as: Schwer CI, et al. Carbon monoxide releasin
of  eukaryotic elongation factor eEF2. Int J Biochem Cell Biol (2012), http://

ransfection of PSCs with HO-1 siRNA blocked HO-1 protein expres-
ion, whereas transfection of nonsilencing siRNA had no effect
n CORM-2-induced HO-1 up-regulation in FCS-stimulated PSCs
Fig. 6). In non-silenced cells, CORM-2 led to an increase in eEF2
elocity sedimentation analysis of polyribosomes from the cytoplasm of PSCs were
CS for 8 h (left profile) or pretreated with 100 �M CORM-2 30 min  before addition
mes as well as the position of the polysomes are indicated.

phosphorylation but did not affect total eEF2 levels. The ability of 

CORM-2 to prevent the decrease of phosphorylated eEF2 caused by 

serum was not altered in PSCs transfected with HO-1 siRNA. Sim- 

ilarly, the pharmacological HO-1 inhibitor tin protoporphyrin IX 

(SnPP IX) did not prevent CORM-2 dependent elevation of phospho- 

rylated eEF2. These data suggest that HO-1 induction is not involved 

in the inhibitory effect of CORM-2 on global protein synthesis. 

3.7. CORM-2 induces cell cycle arrest by decreased translation of 

cyclin D1, cyclin E and inhibition of Rb phosphorylation 

The repression of global protein translation by CORM-2 (Fig. 7A) 

might have serious implications on substantial cellular func- 

tions or the progression of diseases associated with increased 

protein synthesis. PSCs are intimately involved in the pathogen- 
g molecule-2 CORM-2 represses global protein synthesis by inhibition
dx.doi.org/10.1016/j.biocel.2012.09.020

esis of pancreatic diseases and excessive PSC proliferation might 431

lead to fibrosis (Omary et al., 2007). We therefore investigated 432

whether CORM-2 influences the proliferation of PSCs. Prolifera- 433

tion of cells is regulated by a sequential translational activation 434

dx.doi.org/10.1016/j.biocel.2012.09.020
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Fig. 5. CORM-2 increases intracellular calcium and cAMP levels but has no effect
on  AMPK� phosphorylation. Serum-starved PSCs were exposed to vehicle (DMSO)
or  CORM-2 (100 �M)  for the times indicated. (A) [Ca2+]i levels were assessed by
Fura-2 labeling. Data represent mean values of dublicate determinations from
three separate experiments. **p < 0.01 versus control. (B) cAMP concentrations were
determined by a competition enzyme-linked immunoassay. Data represent mean
values of three independent experiments done in duplicate. ***p < 0.001 versus con-
trol. (C) PSCs were exposed to vehicle (DMSO), CORM-2 (100 �M),  or phenformin
(Phen; 1 mM)  in the presence or absence of 10% FCS for 1 h. AMPK� phosphorylation
was  analyzed by immunoblotting. The membrane was  stripped and reprobed with
a

o435

C436

w437

t438

q439

a440

(441

l442

l443

a444

t445

g446

447

t448

2449

e450

s451

c452

w453

m454

Fig. 6. Role of HO-1 in the effect of CORM-2 on eEF2 phosphorylation. PSCs were
transfected with siRNAs directed against hmox1-mRNA (HO-1 siRNA) or nonsilenc-
ing  siRNA (Control siRNA). After transfection, cells were incubated in serum-free
medium for 24 h. CORM-2 (100 �M)  was  added to the cells for 30 min followed by a
8-h stimulation with 10% FCS. HO-1 and phospho-eEF2 (p-eEF2) protein expression
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is a result of eEF2 phosphorylation due to inhibition of PI3K- 488
n  antibody to detect total amounts of AMPK�.

f cyclins that release cell cycle checkpoints. To analyze whether
ORM-2 represses the synthesis of cyclins, synchronized PSCs
ere metabolically labeled with [S35]-methionine for 6 h to allow

he successive translational activation of G1-phase cyclins. Subse-
uently, cyclin D1 and cyclin E proteins were immunoprecipitated
nd resolved by SDS-PAGE and quantified by autoradiography
Fig. 7A). Our results demonstrate that addition of 10% FCS for 6 h
ed to a strong increase in the level of newly synthesized, radio-
abeled cyclin D1 and cyclin E. This effect was almost completely
brogated by CORM-2. The loading of equal amounts of total pro-
ein in each lane was verified by Coomassie Blue G-250 staining of
els before autoradiography (data not shown).

Inhibition of cyclin D1 and cyclin E synthesis may  occur at
he translational or transcriptional level. To test whether CORM-

 inhibits the transcription of cyclin D1 or cyclin E, real-time PCR
xperiments were performed. As demonstrated in Fig. 7B, expo-
ure of PSCs to 10% FCS for 6 h led to a significant increase in both
yclin D1 and cyclin E mRNA levels. However, incubation of PSCs
Please cite this article in press as: Schwer CI, et al. Carbon monoxide releasin
of  eukaryotic elongation factor eEF2. Int J Biochem Cell Biol (2012), http://

ith CORM-2 did not significantly decrease cyclin D1 and cyclin E
RNA levels in FCS-stimulated PSCs (Fig. 7B). This demonstrates
was examined by Western blot analysis. To demonstrate equal loading, membranes
were stripped and reprobed with anti-GAPDH or anti-total eEF2 antibodies.

that reduction of cyclin D1 and cyclin E synthesis is primary due to 

translational repression. 

To further investigate the molecular mechanism resulting from 

CORM-2 induced repression of cyclin D1 and cyclin E synthesis, the 

phosphorylation of Rb was analyzed by Western blotting. Hyper- 

phosphorylation of Rb by cyclin-CDK (cyclin-dependent kinase) 

complexes leads to the release of E2F transcription factors and S- 

phase entry (Lundberg and Weinberg, 1998). As shown in Fig. 7C, 

CORM-2 inhibited FCS-induced phosphorylation at serine 608 and 

serine 807/811 sites that have been described to be specifically 

phosphorylated by cyclin D-CDK4/6 and cyclin E-CDK2 complexes 

(Lundberg and Weinberg, 1998). In contrast, phosphorylation of Rb 

at serine 795 was not significantly affected by CORM-2 treatment. 

Phosphorylation of Rb at serine 795 involves ERK1/2 activation 

(Garnovskaya et al., 2004) that is not influenced by CORM-2 (Fig. 3C, 

panel 3). 

Inhibition of cyclin synthesis and E2F release prevents prolif- 

eration of cells (Wu et al., 2001). To examine the antiproliferative 

effects of CORM-2, PSCs were stained with propidium iodide and 

cell cycle distribution was  analyzed by flow cytometry (Fig. 8A 

and B). Proliferation was induced by 10% FCS in the presence 

or absence of CORM-2 using serum-starved, G0/G1 synchronized 

cells. Compared with untreated controls, 10% FCS led to a strong 

and significant increase in the percentage of cells in S and G2/M 

phases (21.8 ± 3.6 versus 44.2 ± 5.2%; Fig. 8B). There was no sig- 

nificant difference in percentage of cells in S and G2/M phases 

between 0.1 FCS and 10% FCS + CORM-2 treated PSCs (21.8 ± 3.6 

versus 28.5 ± 3.8%; Fig. 8B). Compared with 10% FCS alone, CORM-2 

significantly decreased the percentage of cells in S and G2/M phases 

by 36% (44.2 ± 5.2 versus 28.5 ± 3.8%; Fig. 8B). 

4. Discussion 

Our study demonstrates that the CO-releasing molecule CORM- 

2 blocks global protein synthesis in PSCs. Translational inhibition 
g molecule-2 CORM-2 represses global protein synthesis by inhibition
dx.doi.org/10.1016/j.biocel.2012.09.020

Akt-mTOR signaling, increased [Ca2+]i, and elevated cAMP levels. 489

Translational repression leads to inhibition of cyclin D1 and cyclin E 490

dx.doi.org/10.1016/j.biocel.2012.09.020
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Fig. 7. CORM-2 inhibits the translation of cyclin D1 and cyclin E and represses the phosphorylation of Rb in PSCs. (A) Serum-starved PSCs were stimulated with 10% FCS in
presence of vehicle (DMSO) or CORM-2 (100 �M)  and 50 �Ci/well of [35S]-methionine for 6 h. Cell extracts were subjected to immunoprecipitation using antibodies against
cyclin  D1 and cyclin E. Immunoprecipitates were separated by SDS-PAGE, and protein levels of cyclin D1 and cyclin E were visualized by autoradiography. (B) Serum-starved
PSCs  were stimulated with 10% FCS in presence of vehicle (DMSO) or CORM-2 (100 �M)  for 6 h. Cytoplasmatic RNA was used to perform real-time PCR experiments using
primers  for cyclin D1, cyclin E or GAPDH. Expression of cyclin D1 or E mRNA was  normalized to GAPDH mRNA levels and presented as arbitrary units (mean ± SEM; n = 3).
* s,  not
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he  immunoblots shown are representative of three independent experiments.

ynthesis, cyclin/Cdk-dependent repression of Rb phosphorylation
nd S-phase entry.

CORMs are metal carbonyl compounds capable of delivering
efined amounts of CO into cellular systems, thereby mimicking
he biological effects of intrinsic CO (Motterlini et al., 2002; Sawle
t al., 2006). CORMs have shown antiinflammatory (Sawle et al.,
Please cite this article in press as: Schwer CI, et al. Carbon monoxide releasin
of  eukaryotic elongation factor eEF2. Int J Biochem Cell Biol (2012), http://

005), antiproliferative (Schwer et al., 2010; Taille et al., 2005), and
actericidal properties (Desmard et al., 2009, 2012; Tavares et al.,
011). However, effects of CORM-2 on the translational machin-
ry were previously undisclosed. Our present study demonstrates
 significant versus 10% FCS. (C) Rb phosphorylation (p-Rb) at Ser608, Ser795, and
ranes were stripped and reprobed with an antibody to detect total amounts of Rb.

that CORM-2 released CO acts as a global translational repressor 

by inducing phosphorylation of eEF2. Repression of global protein 

synthesis provides a possible mechanism through which CORM-2 

mediates antiinflammatory and antiproliferative effects. 

Protein synthesis in eukaryotes is regulated at the transcrip- 

tional and the translational level. The elongation stage of mRNA 
g molecule-2 CORM-2 represses global protein synthesis by inhibition
dx.doi.org/10.1016/j.biocel.2012.09.020

requires eEF2, which promotes the GTP-dependent translocation 507

of the nascent protein chain from the A-site to the P-site of 508

the ribosome (Kaul et al., 2011; Rennie, 2005). A major finding 509

of the present study is that CORM-2 prevents the decrease in 510

dx.doi.org/10.1016/j.biocel.2012.09.020
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ig. 8. CORM-2 arrests PSCs at the G0/G1 phase of the cell cycle. (A) Serum-starved
ell  cycle distribution at 24 h was analyzed by flow cytometry. (B) Quantitative ana
n  = 3). *p < 0.05 versus 0.1% FCS; &p < 0.05 versus 10% FCS.

hosphorylated eEF2 caused by serum, which is consistent with
n inhibition of protein translation (Ryazanov et al., 1988). The
ffect of CORM-2 on eEF2 protein expression is time-dependent
nd significantly detectable already at 5 �M.  We  recently showed
hat CORM-2 in the range of 5–100 �M produced no reduction
n PSC cell viability (Schwer et al., 2010). Our observations can
irectly be attributed to CO since RuCl3 does not induce phos-
horylation of eEF2. RuCl3 is the chemical backbone of CORM-2
hat is substituted with CO and therefore is unable to release car-
on monoxide. Interestingly, recent reports describe that CORM-2,

n contrast to RuCl3, modulates redox signaling in smooth mus-
le cells (Taille et al., 2005). Thus translational impairment might
e associated with the formation of reactive oxygen species (ROS).
aille et al. (2005) described that CO-released from CORM-2 inhibits
embrane associated cytochromes, cyclin D1 synthesis, and pro-

iferation but promotes the formation of ROS. Consistently we also
bserved diminished cyclin D1 synthesis and proliferation and it
annot be excluded that radicals contribute to translational inhi-
ition. Experiments, exposing PSCs to 250 ppm CO confirmed, that
ranslational impairment is directly attributed to CO (Schwer et al.,
npublished observation). Binding of CO to cytochromes is most
robably responsible for ROS generation (Taille et al., 2005) but it
ight simultaneously diminish mitochondrial ATP synthesis and

hus activate AMPK, a kinase that has been shown to regulate
Please cite this article in press as: Schwer CI, et al. Carbon monoxide releasin
of  eukaryotic elongation factor eEF2. Int J Biochem Cell Biol (2012), http://

ellular ROS/redox balance (Wang et al., 2012). Additionally, ROS
ormation by CO was associated with inhibition of ERK1/2 phos-
horylation (Taille et al., 2005). However, neither activation of
MPK nor inhibition of ERK1/2 phosphorylation was  evident in our
ere stimulated with 10% FCS in the presence or absence of CORM-2 (100 �M) and
f cells in S-G2M phase obtained by flow cytometry. Data are shown as mean ± SEM

experiments arguing for different and independent pathways reg- 

ulating the translational response. 

Other crucial proteins in the control of mRNA translation are ini- 

tiation factors such as eIF4E and eIF2� (Gingras et al., 2001; Kimball, 

1999; Kimball and Jefferson, 2010). In the present study, we  found 

that CORM-2 has no impact on eIF4E or eIF2� modifications. These 

results are indicative for a specific effect of CORM-2 on translational 

regulators. 

eEF2 phosphorylation is under control of eEF2k, whose activ- 

ity is regulated by binding of calcium and calmodulin (Browne and 

Proud, 2002; Redpath et al., 1996; Ryazanov et al., 1997). Addi- 

tionally, eEF2k can be activated by the cAMP-dependent protein 

kinase in response to elevated cAMP levels (Diggle et al., 1998; 

Hovland et al., 1999). In the present study we show that CORM-2 

increases both [Ca2+]i and cAMP levels, which might contribute to a 

CORM-2-mediated stimulation of eEF2k activity and thus explains 

the increase in phosphorylation of eEF2. Furthermore we demon- 

strate that CORM-2 inhibits serum-induced phosphorylation of Akt, 

p70 S6K and S6 Ribosomal Protein. p70 S6K lies on a mitogen- 

activated signaling pathway downstream of PI3K and mTOR (Pullen 

and Thomas, 1997), that has been shown to inactivate eEF2k and 

thus facilitates the dephosphorylation of eEF2 (Wang et al., 2001) 

and to phosphorylate the S6 protein of the 40S ribosomal sub- 

unit, leading to initiation of protein synthesis (Dufner and Thomas, 
g molecule-2 CORM-2 represses global protein synthesis by inhibition
dx.doi.org/10.1016/j.biocel.2012.09.020

1999). The significance of the PI3K-Akt-mTOR pathway for CORM-2 563

mediated repression of global protein synthesis becomes evident 564

by our observation, that CORM-2 additionally inhibits hyperphos- 565

phorylation of the translation repressor protein 4E-BP1, that is also 566

dx.doi.org/10.1016/j.biocel.2012.09.020
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egulated by this pathway and inhibits cap-dependent translation
y binding to the eIF4E translation initiation factor (Brunn et al.,
997; Pause et al., 1994).

Phosphorylation of eEF2 and hypophosphorylation of 4E-BP1
oth indicate suppression of global protein synthesis by CORM-2.

ndeed we demonstrate a strong decrease in global protein syn-
hesis following CORM-2 treatment. CORM-2 acts at the level of
longation rather than initiation, since compared to cells treated
ith 10% FCS alone, no substantial difference in the analytical
olysome profile could be detected. For this reason effects of
ORM-2 on regulators of translational elongation were further

nvestigated. Interestingly, the translational repressor cyclohex-
mide induces only a moderate inhibition of global protein
ynthesis in cultured PSCs. On plausible explanation might be the
ow concentration of cycloheximide used in the present study,
owever an increase in the concentration of cycloheximide was
ssociated with pronounced cytotoxic effects on PSCs (unpublished
bservation).

Previous reports have shown that amino acid deprivation
nduces phosphorylation of eIF2�, leading to an inhibition of
ranslational initiation (Everson et al., 1989). Since cells were pulse-
abeled in methionine-deficient medium, an increase in eIF2�
hosphorylation would provide a plausible mechanism underly-

ng the inhibitory effect of CORM-2 on global protein synthesis.
y incubating PSCs in medium lacking methionine we  found that
hort-term exposure resulted in only a slight increase in phosphor-
lation of eIF2� (data not shown). Furthermore, control cells were
reated under the same conditions and polysome profiles revealed,
hat translation initiation is not impaired by CORM-2 treatment.

CO acts as a mediator of numerous cellular functions and
ts potential as a therapeutic agent is increasingly recognized
Motterlini and Otterbein, 2010; Ryter et al., 2006). Our results
ndicate that the CO-releasing molecule CORM-2 affects cellular
rotein homeostasis and thereby might influence the execution
f basic cellular functions. Cell cycle progression is mediated by
he sequential translational activation of cyclins that associate
ith cyclin-dependent kinases (Cdks) and thus release cell cycle

heckpoints (Koff et al., 1992). We  demonstrate that CORM-2
ediated repression of global protein synthesis prevents the trans-

ation of cyclin D1 and cyclin E, the subsequent phosphorylation
f the downstream target Rb by cyclin-Cdk complexes, and thus
1/S phase progression. The significance of translation on CORM-2
ediated repression of the phospho-Rb dependent G1/S phase pro-

ression is supported by our observation that hypophosphorylation
f Rb was only demonstrated at cyclin dependent sites (serine 608,
erine 807/811) but not the ERK1/2 dependent site (serine 795). In
ontrast to cyclins, ERK1/2 is not activated by protein synthesis
ut by posttranslational modification (Meloche and Pouyssegur,
007). It has been reported that 4E-BP1 regulates cell prolifera-
ion by selectively inhibiting the translation of mRNAs that encode
roliferation-promoting proteins and proteins involved in cell cycle
rogression (Dowling et al., 2010). Given that 4E-BP1 phosphoryla-
ion was altered by CORM-2 in the present study, 4E-BP1 might be
nvolved in the inhibitory effect of CORM-2 on cyclin D1 and cyclin

 expression. However, in a more recent report, the mTOR inhibitor
orin, which fully inhibits mTORC1, failed to signigicantly suppress
ranslation of cyclin D1 mRNA (Thoreen et al., 2012). Furthermore,
4–48 h of mTOR inhibition are required to significantly exclude
he cyclin D1 mRNA from polysomes (Dowling et al., 2010). In the
resent study, translational inhibition was apparent already at 6 h
f treatment, indicating that 4E-BP1 is most probably not involved
n the inhbitory effect of CORM-2 in the early phase of cyclin D1
Please cite this article in press as: Schwer CI, et al. Carbon monoxide releasin
of  eukaryotic elongation factor eEF2. Int J Biochem Cell Biol (2012), http://

nd cyclin E synthesis.
Previously we have shown that up-regulation of HO-1 inhibits

SC proliferation (Schwer et al., 2008) and CORM-2 induced
ell cycle arrest is associated with activation of p38 MAPK
 PRESS
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signaling, induction of HO-1 protein, and up-regulation of 

p21Waf1/Cip1 (Schwer et al., 2010). The cell cycle inhibitor 

p21Waf1/Cip1 acts by binding to the cyclin E-Cdk2 complex and 

inhibiting its kinase activity (Gu et al., 1993). To explore whether 

HO-1 induction contributes to CORM-2 mediated effects on pro- 

tein synthesis, experiments with HO-1 siRNA were performed. We  

found that CORM-2 profoundly up-regulates HO-1 in PSCs, con- 

firming data from our previous report. However, the ability of 

CORM-2 to prevent the decrease of phosphorylated eEF2 caused by 

serum was  not prevented by transfection of HO-1 siRNA, suggesting 

that HO-1 is not involved in CORM-2 induced repression of cyclin 

D1 or cyclin E synthesis. Therefore it must be taken into consider- 

ation that both HO-1 dependent and independent mechanisms may  

account for the inhibitory effect of CORM-2 on cell cycle progres- 

sion in PSCs: up-regulation of p21Waf1/Cip1 protein and a reduced 

accessibility of cyclin-Cdk complexes.
The influence of CORM-2 liberated carbon monoxide on cellular

protein synthesis most likely has significant implications on the
therapeutic potential of CORMs and released CO respectively. A 

marked reduction in global protein synthesis describes a potential
mechanism for the known antiproliferative properties of CORMs. 

This may  be beneficial in disorders associated with excessive cel- 

lular proliferation and remodeling, such as cancer, hypertrophy, 

or fibrosis. However therapeutic application is not limited to cell 

cycle related effects. CORMs may  gain increasing significance in the 

treatment of pancreatic fibrosis as they might be able to decrease 

the production of extracellular matrix components. Moreover, 

CORMs have been shown antiinflammatory properties in various 

cell types (Megias et al., 2007; Sawle et al., 2005) and organ sys- 

tems (Cepinskas et al., 2008; Katada et al., 2010). It is tempting to 

speculate that inhibition of global protein synthesis may  contribute 

to these CORM mediated effects. 

Nevertheless, therapeutic inhibition of global protein synthe- 

sis has to be considered carefully. Although it has been described 

that prevention of synthesis of potentially cytotoxic mediators such 

as inducible nitric oxide synthase or cyclooxygenase-2 is protec- 

tive (Surh et al., 2001) and inhibition of translational initiation 

or elongation factors may  lead to a targeted expression of spe- 

cific cytoprotective proteins by eEF2/eIF independent mechanisms 

(Lopez-Lastra et al., 2005), a prolonged inhibition of general protein 

synthesis has been associated with cellular damage. For instance, 

lack of recovery from protein synthesis inhibition has been shown 

to correlate with neuronal death following brain ischemia and 

reperfusion (Degracia et al., 2002; Thilmann et al., 1986) and inhi- 

bition of protein synthesis may  result in apoptosis (Lennon et al., 

1990; Martin, 1993). Compared to carbon monoxide as a gas, 

CORMs are easier to handle and offer the advantage of tissue- and 

organ-specific delivery (Motterlini et al., 2002). Compounds with 

fast CO release are more suitable for treatment, because application 

can be better controlled and lesser side effects are expected. 

In conclusion, this study provides first evidence that CO acts 

as a global translational repressor by inducing phosphorylation of 

eEF2. This could constitute a general mechanism explaining the 

observed antiinflammatory and antiproliferative effects of CO. Our 

findings suggest a beneficial role of CORMs in the treatment of 

fibrosis, inflammation or other pathologic states being associated 

with excessive protein synthesis. However, application of exoge- 

nous CO might also have undesirable effects on cellular protein 

homeostasis. 

Appendix A. Supplementary data 
g molecule-2 CORM-2 represses global protein synthesis by inhibition
dx.doi.org/10.1016/j.biocel.2012.09.020

Supplementary data associated with this article can be 693

found, in the online version, at http://dx.doi.org/10.1016/j.biocel. 694

2012.09.020. 695

dx.doi.org/10.1016/j.biocel.2012.09.020
http://dx.doi.org/10.1016/j.biocel.2012.09.020
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