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Mutant GlialCAM Causes Megalencephalic Leukoencephalopathy
with Subcortical Cysts, Benign Familial Macrocephaly,
and Macrocephaly with Retardation and Autism

Tania López-Hernández,1,9 Margreet C. Ridder,3,9 Marisol Montolio,1,4 Xavier Capdevila-Nortes,1

Emiel Polder,3 Sònia Sirisi,1,6 Anna Duarri,1,4 Uwe Schulte,7 Bernd Fakler,7 Virginia Nunes,2,5,6

Gert C. Scheper,3 Albert Martı́nez,8 Raúl Estévez,1,4,10,* and Marjo S. van der Knaap3,10,*

Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a leukodystrophy characterized by early-onset macrocephaly and

delayed-onset neurological deterioration. RecessiveMLC1mutations are observed in 75% of patients with MLC. Genetic-linkage studies

failed to identify another gene. We recently showed that some patients withoutMLC1mutations display the classical phenotype; others

improve or become normal but retain macrocephaly. To find another MLC-related gene, we used quantitative proteomic analysis of

affinity-purified MLC1 as an alternative approach and found that GlialCAM, an IgG-like cell adhesion molecule that is also called Hep-

aCAM and is encoded by HEPACAM, is a direct MLC1-binding partner. Analysis of 40 MLC patients without MLC1 mutations revealed

multiple different HEPACAM mutations. Ten patients with the classical, deteriorating phenotype had two mutations, and 18 patients

with the improving phenotype had one mutation. Most parents with a single mutation had macrocephaly, indicating dominant inher-

itance. In some families with dominant HEPACAM mutations, the clinical picture and magnetic resonance imaging normalized, indi-

cating that HEPACAM mutations can cause benign familial macrocephaly. In other families with dominant HEPACAM mutations,

patients had macrocephaly and mental retardation with or without autism. Further experiments demonstrated that GlialCAM and

MLC1 both localize in axons and colocalize in junctions between astrocytes. GlialCAM is additionally located in myelin. Mutant Glial-

CAM disrupts the localization of MLC1-GlialCAM complexes in astrocytic junctions in a manner reflecting the mode of inheritance. In

conclusion, GlialCAM is required for proper localization ofMLC1.HEPACAM is the second gene found to bemutated inMLC. Dominant

HEPACAM mutations can cause either macrocephaly and mental retardation with or without autism or benign familial macrocephaly.
Introduction

Megalencephalic leukoencephalopathy with subcortical

cysts (MLC, MIM 604004) is a leukodystrophy with auto-

somal-recessive inheritance.1 Patients develop macroce-

phaly during the first year of life. After several years, there

is evidence of slow neurological deterioration, including

cerebellar ataxia, spasticity, epilepsy, and mild cognitive

decline. From early on, magnetic resonance imaging

(MRI) reveals diffuse signal abnormality and swelling of

the brain white matter and subcortical cysts (Figure S1,

available online).1 In follow-up exams, the white matter

abnormalities remain and atrophy ensues.1 A brain biopsy

from an MLC patient showed extensive myelin vacuola-

tion, mainly affecting the outer myelin layers, which

causes the swollen appearance of the white matter.2 In

2001, we demonstrated that mutations in MLC1 (MIM

605908) cause MLC.3 MLC1 mutations are found in

approximately 75% of the MLC patients.4 MLC1 is an olig-

omeric membrane protein that is expressed almost exclu-

sively in the brain. It has some degree of homology to

ion channels.5,6 Within the brain, MLC1 is mainly located
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in astrocyte-astrocyte junctions close to blood- and cere-

brospinal fluid (CSF)-brain barriers, Bergmann glia, and

main axonal tracts.5–7 Thus far, the physiological role of

MLC1 has remained unknown, and a suggested role in

ion transport has not been confirmed.3,5,8

In some families, members with MLC do not have

MLC1 mutations, and these families do not show linkage

to the MLC1 locus, indicating that mutations in at least

one other gene are involved in MLC,9,10 but genetic-

linkage studies failed to identify another disease gene.

We recently described two distinct phenotypes among

MLC patients without MLC1 mutations.11 The classical

phenotype retains typical clinical and MRI features, as

seen in patients with MLC1 mutations.1,11 The second,

improving phenotype is initially the same as the classical

phenotype but lacks clinical deterioration and shows

major improvement or normalization of the MRI abnor-

malities (Figure S1).11

Because of the unsuccessful genetic-linkage studies and

the possibility of further genetic heterogeneity, we decided

to use alternative strategies to identify eligible candidate

genes.
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Material and Methods

The studies on human samples were performed with approval

of the institutional review board, VU University Medical Center,

Amsterdam, and informed consent from the families. The animal

experimental protocols were approved by the Animal Care and

Ethics Committee of the University of Barcelona. Protocols for

the use and manipulation of the animals were approved by the

Government of Catalonia.
Biochemistry
Preparation of Source Material

Plasma membrane-enriched protein fractions were prepared from

pools of freshly isolated whole rat or mouse brains according to

the procedure used in Zolles et al.12 For solubilization, the

prepared membrane vesicles were resuspended in ComplexioLyte

buffer 47a (at 0.8 mg protein/ml, LOGOPHARMGmbH, Germany;

with protease inhibitors added) and incubated for 30 min at 4�C;
nonsoluble components were removed afterward by ultracentrifu-

gation (10 min at 150.000 3 g). Efficiency of solubilization was

determined by immunoblot analysis of SDS-PAGE-resolved

aliquots of solubilisate and pellet fractions. Polyvinylidene fluo-

ride (PVDF) membranes were probed with rabbit polyclonal anti-

bodies (a-N1 or a-NH, 1:10.000, see below), stained with goat

anti-rabbit-HRP (Santa Cruz Biotechnologies, USA) and developed

with ECLþ (GE Healthcare, USA).

Preparation of Antibodies

Immune sera against N-terminal mouse MLC1 peptides (a-N1 and

a-N2) and the a-NH (anti-N-terminus of human MLC1) antibody

were generated and characterized previously.5,7,13 The a-NH

also recognizes mouse/rat MLC1. Immune sera against a mouse

GlialCAM synthetic peptide (QRIREQDESGQVEISA), correspond-

ing to amino acids 403–418 of GlialCAM, were raised in rabbits

with the help of the services provided by Eurogentec. The peptide

was coupled to keyhole limpet hemocyanin via a cysteine residue

that has been added to the N-terminal end of the peptide. After

three boosts of immunization, the antisera were affinity purified

with the peptide covalently coupled to Sulpholink (Pierce). The

polyclonal antibody was tested by immunoblotting, immunofluo-

rescence, and immunoprecipitation on HeLa cells expressing

human GlialCAM and on mouse brain tissue.

Affinity Purification

For each experiment, 1.5 ml freshly prepared solubilisate (rat or

mouse) was incubated for 2 hr at 4�C with 20 mg of the respective

immobilized antibody13 (a-N1, a-N2 a-NH, a-GlialCAM, IgG ¼
control rabbit IgG [Upstate, USA]). After a brief washing (twice

for 5 min each time) with ComplexioLyte 47a, bound proteins

were eluted with Laemmli buffer (dithiothreitol [DTT] was added

after elution). Eluates were then briefly run on SDS-PAGE gels

followed by silver staining and tryptic digestion. During these

experiments, samples were taken for immunoblot analysis with

the indicated MLC1 and GlialCAM antibodies.

Preparation of Myelin

Myelin was prepared as described previously.14 Two brains from 6-

to 8-week-old wild-type mice were homogenized in 20 volumes of

homogenization buffer (0.32M sucrose in 10mMHEPES [pH 7.4])

with five strokes with a loose pestle and seven strokes with a tight

pestle. The homogenate was layered over 0.85 M sucrose, centri-

fuged at 25,000 rpm for 30 min in a swinging bucket rotor.

Proteins located in the interphase were removed, resuspended in

10 volumes of water, and centrifuged at 25,000 rpm for 15 min.
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The pellet was twice cleansed of sucrose by water suspension

and centrifugation. Then, pellets were suspended again in homog-

enization buffer and layered over 0.85 M sucrose and centrifuged

at 25,000 rpm for 30 min. The interphase layer was again sus-

pended in water, centrifuged for 15 min, and resuspended in

10mMHEPES buffer (pH 7.4) containing 1% TritonX-100. Protein

was quantified by bicinchoninic acid, and 20 mg was used for SDS-

PAGE and immunoblot analyses.
Mass Spectrometric Analysis
Liquid Chromatography-Mass Spectrometry/Mass Spectrometry Analysis

Stained gel lanes were excised in two parts (upper and lower), and

proteins were digested with trypsin according to the procedure

described previously.15 Extracted peptides dissolved in 0.5% tri-

fluoroacetic acid were loaded on a precolumn (C18 PepMap100,

5 mm; Dionex, Idstein, Germany) of an UltiMate 3000 HPLC (Dio-

nex, Idstein, Germany). An aqueous organic gradient was then

applied for elution and separation of peptides on a 75 mm column

packed with C18 beads (ReproSil-Pur 120 ODS-3; Dr. A Maisch,

Ammerbuch-Entringen, Germany) and directly electrosprayed

into an LTQ-FT mass spectrometer (Thermo Scientific, Bremen,

Germany; ion source: Proxeon, Odense, Denmark). Each scan

cycle consisted of one FTMS full scan and up to five ITMS depen-

dent MS/MS scans of the five most intense ions. Dynamic

exclusion (30 s, mass width 20 ppm) and monoisotopic precursor

selection were enabled. Using Mascot (Matrix Science, UK) we

searched extracted MS/MS spectra against the Swiss-Prot database

(Mammalia). We allowed common variable modifications and one

missed tryptic cleavage; peptide tolerance was5 10 ppm and MS/

MS tolerance was 5 0.8 Da. Proteins that (1) were identified by

only one specific MS/MS spectrum or (2) presented exogenous

contaminations like keratins, trypsin, or immunoglobulins were

not considered in further evaluations.

Protein Quantification

We used two previously detailed protein quantificationmethods16

that are both based on liquid chromatography-mass spectrometry

(LC-MS) peptide signal intensities extracted (as peak volumes

[PVs]; m/z tolerance was 6 ppm) and aligned (between individual

LC-MS runs by their retention times; tolerance was 8%) with MS

Inspect (Computational Proteomics Laboratory, Fred Hutchinson

Cancer Research Center, Seattle, WA, USA) and in-house written

software. The relative quantity of a protein in affinity purification

sample versus control was calculated as a median of consistent

peakvolume ratios of respective peptides (rPV). Ensuring the signif-

icanceof rPVs, required that at least twopeptide ratios had assigned

PVs totaling 100,000 volume units. Proteins were regarded as

specifically (co-) purified when their rPV values were higher than

10.Themolar amountsofdifferentproteinswere comparedbyusing

abundancenorm values (as in Figure 1), calculated as the sum of all

assigned peak volumes (totalPV) divided by the number of MS-

accessible amino acids (sequence of tryptic peptides with masses

between 740 and 3000 Da under the MS settings used).
Genetic Analysis
The diagnosis of MLC was established by MRI criteria.1 In those

MLC patients in whom we found no mutations in MLC1 by

sequence analysis of genomic DNA, as well as analysis of MLC1

cDNA and MLPA, we analyzed HEPACAM (hepatic and glial cell

adhesion molecule, MIM 611642), the gene encoding GlialCAM.

HEPACAM primers were designed with ExonPrimer (Table S1).

Accession numbers of the reference sequences are NM_152722.4
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Figure 1. Proteomic Identification of GlialCAM as a Major Binding Partner of MLC1
(A) Affinity purification (AP) strategy based on efficient MLC1 solubilization (left) as visualized by immunoblot analysis of SDS-PAGE-
resolved samples from rat brainmembrane, solubilisate, and pellet (stained with anti-MLC1 (a-N1)) and three antibodies (right) directed
against N-terminal epitopes of MLC1. Similar results were obtained when two different antibodies were applied or when the three anti-
bodies were applied simultaneously, confirming the specificity of the proteomics data.
(B and C) Evaluation ofMLC1 affinity purifications with the indicated antibodies. (B) 2D plot of protein abundances determined bymass
spectrometry (for abundancenorm values see Material and Methods) of AP with a-N1 (from rat brain) versus AP with a-NH (from mouse
brain). Only proteins specifically enriched (more than 10-fold of the amount in the respective IgG control) and identified in both APs are
shown (as dots). Note the distinct quantitative correlation of GlialCAM with MLC1. Pearson correlation of GlialCAM and MLC1 abun-
dancenorm values across all three APs and controls is r¼ 0.96. (C) Immunoblot analysis of APs with the indicated antibodies stained with
anti-MLC1 (a-N1; upper) and anti-GlialCAM (lower); lanes resolve aliquots of solubilisate before (S) and after AP (U), of eluates from APs
(E), and of corresponding IgG control APs (C).
(D) Immunoblots showing specific copurification of MLC1 in an AP with anti-GlialCAM (samples and antibodies labeled as before). ‘‘–’’
indicates no sample was loaded.
(mRNA) and NT_033899.8 (gDNA). PCR amplification of exons 1–

6 of HEPACAM and their surrounding intronic regions was carried

out with Platinum TAQ DNA Polymerase according to the manu-

facturer’s instructions (Invitrogen). For exon 7, which has a very

high-GC content, Platinum TAQ DNA-polymerase (Invitrogen)

was used in combination with 5X AccuPrime� GC-Rich Buffer A

(Invitrogen). The PCR products were analyzed by cycle sequencing

on an ABI3730 Genetic Analyzer (Applied Biosystems) with the

same primers used for PCR amplification, with the exception of

the forward primer of exon 1. The resulting chromatograms

were analyzed with Sequence Pilot (JSI Medical Systems Gmbh)

with ENSG00000165478 as reference sequence.
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Immunofluorescent and Electron Microscopic Studies in Tissue

Tissue immunohistochemistry was performed as previously

described.5,7 For electron microscopic (EM) studies, small human

cerebellum samples were obtained postmortem, fixed in 4% para-

formaldehyde and 0.1% glutaraldehyde in 0.12 M phosphate

buffer, andprocessed. Theywere cryoprotected gradually in sucrose

and cryofixed by immersion in liquid propane. Freeze substitution

was performed at �90�C during 3 days in an Automatic Freeze

SubstitutionSystem(AFS, Leica);methanol containing0.5%uranyl

acetate was used as a substitution medium. Infiltration was carried

out in Lowicryl HM20 at �50�C and then polymerized with UV

lamps. Ultrathin sections were collected and processed for
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postembedding immunostaining. For double immunostaining,

grids were incubated with rabbit anti-N4-human MLC1 (1:10)

and mouse anti-GlialCAM (1:10) antisera. The binding of primary

antibodies was visualized by incubating with goat anti-rabbit or

goat anti-mouse secondary antibodies conjugated to either 12 or

18 nm gold particles (British BioCell, International). In control

experiments, the primary antibodies were omitted—no immuno-

gold labeling occurred under these conditions.

Primary Culture and Adenoviral Transduction
Rat primary astrocytes were prepared as described previously13

with somemodifications. Cortex and hippocampus were removed

from newborn (1 to 3 days old) Sprague Dawely rats (Charles

River). Cerebral cortices were dissected and the meninges were

carefully removed in cold sterile 0.3% BSA and 0.6% glucose in

PBS. The tissue was trypsinized for 10 min at 37�C and mechani-

cally dissociated in complete Dulbecco’s modified Eagle’s medium

(DMEM; with 10% heat-inactivated fetal bovine serum [Biological

Industries], 1% penicillin/streptomycin [Invitrogen] and 1% gluta-

mine [Invitrogen] plus 40 U/ml DNase I [Sigma]) through a small

bore fire-polished Pasteur pipette. The cell suspension was pelleted

and resuspended in fresh complete DMEM, filtered through a 100-

mm nylon membrane (BD Falcon) and plated into 75 cm2 cell-

culture flasks (TPP). When the mixed glial cells reached conflu-

ence, contaminating microglia, oligodendrocytes, and precursor

cells were dislodged by mechanical agitation and removed as

previously described.17

Astrocytes were plated in 6-well plates at a density of 4 3 105

cells per well or in poly-D-lysine-coated coverslips at 7.5 3 104

cells per 24-well plate. Medium was changed every 3 days. To

increase the expression of MLC1 and GlialCAM detection at the

plasma membrane (data not shown), we arrested astrocytic

cultures in the cell cycle by addition of 2 mM cytosine b-D-arabino-

furanoside (AraC, Sigma). Cultured astrocytes were identified by

their positive GFAP staining (Dako).

Construction of adenovirus expressing wild-type HA-tagged

human MLC1 has been described.13 In a similar manner, we con-

structed and produced adenoviruses expressing three copies of the

flag epitope fused to wild-type human GlialCAM or to human

GlialCAM containing either the recessive mutations p.Arg92Gln,

p.Arg98Cys, and p.Ser196Tyr or the dominant mutations

p.Arg92Trp and p.Gly89Asp.

To infect astrocytes, we added adenoviruses at multiplicity of

infection (MOI) 3 and kept them overnight at 37�C. Cells were

washed, and then fresh medium was added. Astrocytes were incu-

bated at 37�C until they were processed.
Results

MLC1-Interacting Proteins

We used a method of quantitative proteomic analysis of

affinity-purified MLC1 to identify candidate genes for

MLC. Independent affinity-purification experiments with

MLC1 were performed with solubilized brain membranes

and three different antibodies directed against peptides

from theMLC1N terminus (Figure 1A). Protein abundance

determined by quantitative mass spectrometry identified

HepaCAM, more correctly called GlialCAM,18 as the

protein with the second highest yield (after MLC1) in all

purifications (Figure 1B and Figure S2A). Immunoblots
The Am
with antibodies against GlialCAM (Figure S3) demon-

strated that the protein was present in all purifications

with all different MLC1 antibodies (Figure 1C). Not all

GlialCAM coimmunoprecipitated with MLC1

(Figure 1C), possibly because not all GlialCAM is associated

with MLC1 or because the coassembly dissolves during

membrane protein solubilization. We confirmed the inter-

action between GlialCAM and MLC1 in reverse affinity

purification experiments by using an antibody against

GlialCAM that specifically coimmunoprecipitated Glial-

CAM and MLC1 from brain membranes. In the reverse

purification, nearly all MLC1 was associated with Glial-

CAM (Figure 1D). Coimmunoprecipitation experiments

with extracts from cells transfected with both genes also

showedpositive interaction (Figure S2B), indicating a direct

interaction between the proteins. These findings made

HEPACAM an excellent candidate gene for MLC patients

without MLC1 mutations.
HEPACAM Mutations in MLC Patients without MLC1

Mutations

We analyzed the exons and surrounding intronic regions

of HEPACAM in 40 patients from 34 families from around

the world. In ten patients from eight families, we found

two HEPACAM mutations (Table 1). Sequence analysis of

HEPACAM in the parents showed autosomal-recessive

inheritance of the two mutations in all cases except for

one family with a de novo mutation. None of the patients

had two mutations that abrogate expression of GlialCAM.

In 18 patients from 16 families, we found one HEPACAM

mutation, which was either inherited from a parent or

arose de novo (Table 1). In 12 patients from ten families,

we did not find HEPACAM mutations.

The observed nucleotide changes in HEPACAM are most

likely pathogenic. They were not observed in 400 control

chromosomes. All missense mutations affect amino acids

that are conserved across a wide range of species (Fig-

ure 2B). Nine missense mutations affect amino acids in

the predicted immunoglobulin domains in the extracel-

lular part of GlialCAM (Figures 2A and 2C). p.Pro148Ser

affects a residue between the two immunoglobulin

domains. All these amino acid substitutions are predicted

to affect protein function (SIFT). The substitution of

residue Leu23 by His is predicted to affect the signal

peptide, which spans the first 33 amino acids (SignalP

3.0 Server). Patient EL775 had two missense mutations,

both inherited from the father. p.Asp128Asn is probably

the pathogenic mutation because it is also observed in

patients EL158 and EL708.

In 12 patients from ten families, neither MLC1 nor

HEPACAM mutations were found. In these families, we

could not exclude linkage with both the MLC1 and

HEPACAM loci with certainty (data not shown). The possi-

bility of hidden MLC1 or HEPACAM mutations cannot,

therefore, be excluded, and it is not certain that there

must be a third gene mutated in MLC.
erican Journal of Human Genetics 88, 422–432, April 8, 2011 425



Table 1. HEPACAM Mutations

Patient Exon DNA Protein P/M/de novoa

Two Mutations

EL84/85 3 c.587C>A p.Ser196Tyr Pb

4 c.789G>A p.Trp263X M

EL106 3 c.580 delC,
582C>T (hom)

p.Leu194PhefsX60 P þ M

EL125 3 c.442C>T
(hom)

p.Pro148Ser P þ M

EL726 2 c.275G>A p.Arg92Gln P

3 p.631G>A p.Asp211Asn M

EL774 2 c.292C>T
(hom)

p.Arg98Cys –c

EL785 1 c.68T>A p.Leu23His de novo

c.461_462 del p.Ser154TyrfsX16 Pd

4 c.742G>T p.Gly248X Pd

EL816 3 c.442C>T
(hom)

p.Pro148Ser PþM

EL889/890 2 c.292C>T
(hom)

p.Arg98Cys PþM

One Mutation

EL128 2 c.265G>A p.Gly89Ser de novo

EL158 2 c.382G>A p.Asp128Asn Pe

EL604 2 c.265G>A p.Gly89Ser P

EL611 2 c.274C>T p.Arg92Trp M

EL624/625 2 c.274C>T p.Arg92Trp M

EL683/684 2 c.265G>A p.Gly89Ser P

EL686 2 c.266G>A p.Gly89Asp P

EL700 2 c.274C>T p.Arg92Trp –

EL708 2 c.382G>A p.Asp128Asn –

EL743 2 c.274C>T p.Arg92Trp M

EL775 2 c.382G>A p.Asp128Asn Pd

5 c.862C>T p.Arg288Cys Pd

EL847 2 c.404_406 del p.Lys135 del P

EL862 2 c.265G>A p.Gly89Ser M

EL882 2 c.265G>A p.Gly89Ser de novo

EL903 2 c.265G>A p.Gly89Ser Me

EL944 2 c.274C>T p.Arg92Trp de novo

a P, paternal; M, maternal; bold and italic indicates macrocephaly.
b Probably from father but no DNA available.
c No DNA of the parents available.
d Both changes from same parental allele.
e Transient macrocephaly.
Inheritance, Phenotypes, and Mutations

All ten patients with twoHEPACAMmutations inherited in

an autosomal-recessive fashion had the classical pheno-

type (Table S2). They had infantile-onset macrocephaly

and delayed-onset motor deterioration, epilepsy, and
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cognitive decline of variable severity. The MRI showed

typical white matter abnormalities in all stages of the

disease (Figure S1). The parents were normal, but two of

the 16 had macrocephaly (Table 1).

All 18 patients with one HEPACAM mutation had the

improving phenotype (Table S3). They developedmacroce-

phaly within the first year. In two of the 18, the head

circumference subsequently normalized. The motor capa-

bilities became normal or almost normal. Some patients

had normal intelligence, and others, with intelligence quo-

ficients (IQs) between 50 and 75, had a stable mental retar-

dation. Three of the mentally retarded patients also had

autism or pervasive developmental disorder not otherwise

specified according to DSM IV criteria. In summary, 11 of

the 18 patients became clinically normal, apart from mac-

rocephaly. MRI initially showed typical abnormalities but,

on follow up, major improvement or normalization

(Figure S1). For 13 patients from 11 families, eight of the

11 parents with the mutated allele had macrocephaly,

one had transient macrocephaly as a child, and two never

had macrocephaly as far as they could remember.

Regarding the five remaining patients, the HEPACAM

mutation arose de novo in three, and their parents had

normal head circumference; DNA of the parents was not

available in two. Only one of the parents without the

mutated allele had macrocephaly. The family data suggest

autosomal-dominant inheritance for the single HEPACAM

mutations with variable penetrance. An analysis of micro-

satellite markers near HEPACAM in the families with the

two most common dominant mutations (p.Gly89Ser and

p.Arg92Trp) revealed no shared haplotype, excluding the

possibility of founder effects for these two mutations

(data not shown).

The HEPACAM mutations were either recessive or

dominant. The recessive mutations were spread over the

extracellular region of GlialCAM, whereas the dominant

mutations were clustered in one of the predicted immuno-

globulin-like domains (Figure 2C). Molecular modeling of

the extracellular domain of GlialCAM showed that domi-

nant mutations are located in a putative interface of the

first immunoglobulin domain (Figure 2D).

GlialCAM-MLC1 Interaction

Immunohistochemistry of human brain tissue demon-

strated GlialCAM expression mainly around blood vessels

(Figure 3 and Figure S3). Double immunostaining with

amonoclonal antibody against GlialCAM and a polyclonal

antibody against human MLC113 showed that MLC1 and

GlialCAM colocalize at astrocytic end-feet (Figure 3A). Im-

munogold EM confirmed this colocalization in astrocyte-

astrocyte junctions (Figure 3B).

GlialCAM mRNA and protein have been detected in

oligodendrocytes, astrocytes,18 and neurons19 (Figure S3),

whereas MLC1 has not been detected in oligodendro-

cytes.5–7,20 In MLC, vacuolation mainly affects the outer

layers of myelin sheaths.2 We investigated whether

GlialCAM is localized inmyelin. EM immunogold revealed
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Figure 2. Genetic Studies in MLC Patients
(A) Schematic representation of domains in GlialCAM and position of missense mutations. The positions of several domains in human
GlialCAMwere predicted with PFAM, SOSUI, and SignalP 3.0. The following abbreviations are used: SP, signal peptide; TMM, transmem-
brane domain; Ig, Immunoglobulin. The missense mutations found in MLC patients are indicated above (dominant, in pink) and below
(recessive, in blue) the figure.
(B) Conservation of affected amino acids. GlialCAMprotein sequences were alignedwith ClustalW software. The amino acids affected by
missense mutations are indicated by a gray bar. The position of the affected residues in the human sequence is given above the
sequences. NCBI accession numbers: Homo sapiens, NP_689935.2; Pan troglodytes, XP_522240.2; Bos taurus, NP_001026929.1; Canis
familiaris, XP_852267.1; Mus musculus, NP_780398.2; Monodelphis domestica, XP_001371494.1; Danio rerio, NP_001018526.1. En-
sembl protein ID: Xenopus tropicalis, ENSXETP00000008539.
(C) Schematic model of the protein GlialCAM. The structural model of the extracellular domain was accomplished with the automated
homology-modeling server of the ExPASy server. Mutated residues are depicted with the same color-code as in (A).
(D) Stereo view of a ribbon representation viewed from the top of a structural model of the extracellular domain of GlialCAM. Pink high-
lights the residues mutated in dominant MLC, and blue highlights the residues in recessive MLC. Dominantly mutated residues are
located in the putative extracellular-binding pocket, suggesting that it might mediate protein-ligand interactions.
particles inside axons, in contact regions between myelin

and axons, and surrounding myelin (arrows in Fig-

ure 3C). In human medulla oblongata sections, where

axons and myelin can be observed easily, immunostain-

ings combining antibodies against GlialCAM with anti-

bodies against neurofilament heavy chain (NF-H) or

myelin basic protein (MBP) demonstrated that GlialCAM

and NF-H staining coincide in axons (Figures 3D and 3E)

and that not only is GlialCAM observed on the outside

of myelin sheaths (inset in Figure 3E), but there is also

a weak colocalization with MBP in myelin (Figure 3F).

Classical biochemical fractionation protocols to purify

myelin14 and immunoblotting to detect specific proteins

revealed GlialCAM but not MLC1 in the myelin fraction

(Figure 3G).
The Am
The effect of mutations located in the extracellular

domain of GlialCAM was studied in cultures of primary

astrocytes, the cell type with the highest natural abun-

dance of both MLC1 and GlialCAM. After adenoviral-

mediated expression, lysates of astrocytes were analyzed

by immunoblot and immunofluorescence. Expression

levels of all types of mutant GlialCAMwere not statistically

different from wild-type GlialCAM (Figure S4). Immuno-

fluorescence revealed that MLC1 and GlialCAM are located

in cell-cell junctions between astrocytes (Figure 4A). Coex-

pression of wild-type MLC1 and GlialCAM containing the

recessive mutations p.Arg92Gln or p.Arg98Cys resulted in

diffuse intracellular MLC1 and GlialCAM localization with

partial enrichment in cell membranes but not specifically

in cell junctions (Figure 4B and Figure S5A). No defect
erican Journal of Human Genetics 88, 422–432, April 8, 2011 427



Figure 3. Colocalization of MLC1 and
GlialCAM in Brain Tissue
(A) Double-immunolabeling experiments
in human cerebellum, combining Glial-
CAM (in green) with MLC1 (in red), shows
nearly complete colocalization (Merge, in
yellow) in astrocytic processes surrounding
a blood vessel.
(B) Double-immunolabeling EM shows
colocalization of MLC1 (18 nm gold parti-
cles) and GlialCAM (with a commercially
available monoclonal antibody; 12 nm
gold particles, arrows) in astrocyte-astro-
cyte junctions in human tissue.
(C) Postembedding staining of GlialCAM
in human cerebellum also shows immuno-
reactivity (arrows) inside axons, in contact
regions between myelin and axons, and in
cells that surround myelin.
(D–F) Localization of GlialCAM in human
medulla oblongata. Using the polyclonal
rabbit antibody, we detected GlialCAM in
astrocytes surrounding blood vessels
(arrowheads in D and E), in axons, and in
myelin (arrows in inset in E and in F).
Double immunolabeling of GlialCAM and
NF-H, which stains axons, confirmed co-
localization of GlialCAM and NF-H (yellow
staining in E). The dashed line in E indi-
cates the area amplified in the inset.
Double immunolabeling of GlialCAM and
MBP, which stains myelin, demonstrated
a weak labeling of GlialCAM in myelin.
(G)Myelin was purified from brains of 6- to
8-month-old mice as described in the
Material and Methods. Twenty microgram
of the initial homogenate (H) and of
myelin (M) were analyzed by SDS-PAGE
and immunoblotting. Blots were probed
with antibodies against MBP, GFAP,
MLC1, and GlialCAM. The amount of
GFAP detected in the myelin fraction was
low as compared to the homogenate, indi-
cating that the contamination of the
myelin fraction with nonmyelin proteins
was low. The following abbreviations are
used: AST, astrocyte; MBP, myelin basic
protein; GFAP, glial fibrillary acid protein;
NF-H, neurofilament heavy chain; M,
myelin; A, axon.
The scale bars indicate 50 mm (A and D),
500 nm (B and C), and 10 mm (F).
was found for the mutation p.Ser196Tyr (Figure S5C).

Similar mislocalization of MLC1 and GlialCAM was ob-

served after coexpression of wild-typeMLC1 andGlialCAM
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containing the dominant mutations

p.Arg92Trp and p.Gly89Asp (Figures

4D and Figure S5D).

To address the mode of inheritance

of the mutations biochemically, we

performed experiments with equal

levels of wild-type GlialCAM and

GlialCAM containing a dominant or

recessive mutation together with
MLC1. The localization of MLC1 and GlialCAM was

analyzed by immunofluorescence. Coexpression of wild-

type GlialCAM rescued the MLC1-trafficking defect caused



Figure 4. MLC1 and GlialCAM Subcel-
lular Localization Changes Caused by
Recessive and Dominant GlialCAM Muta-
tions in Primary Cultures of Astrocytes
(A–F) Astrocytes were coinfected with
adenoviruses expressing MLC1 and wild-
typeGlialCAM (A) orGlialCAMcontaining
a recessive (B, p.Arg92Gln) or a dominant
(D, p.Arg92Trp) MLC-related mutation at
MOI 3. In (C) and (E), cells were coinfected
with MLC1, wild-type GlialCAM, and
GlialCAM containing the indicated muta-
tionat aMOI ratio of 3:2:2.Cellswerefixed,
and permeabilized and then immunofluo-
rescence was performed with a rabbit
polyclonal antibody against human
MLC1 (green) and a monoclonal antibody
detecting GlialCAM protein (red). Nuclei
were stained with DAPI (blue). Colocaliza-
tionbetween thegreenand the red channel
is shown in yellow. Images correspond to
representative cells from four independent
experiments. The scale bars represent
20 mm. (F) Random pictures from different
experiments were taken. Quantification
of the percentage of cells located in junc-
tions (blue), not in junctions (red), or
with a mixed phenotype (yellow, located
partially in junctions and not in junctions)
was performedmanually. Data aremean5
standard error of themeanof four indepen-
dent experiments. Bonferroni’s multiple
comparison test versus in junctions
and not in junctions was used. *p < 0,05;
**p < 0,01; ***p < 0,001. Representative
images for the other mutations shown
in the quantification are depicted in
Figure S5.
by GlialCAM with recessive mutations (Figures 4C and 4F

and Figure S5B) but did not rescue the trafficking defect

caused by GlialCAM with dominant mutations (Figures

4E and 4F and Figure S5E). No difference in protein levels

was observed between the mutants and the wild-type

(Figure S4), making it unlikely that the trafficking defect

is due to gene-dosage effects.
The American Journal of Human
Discussion

The leukodystrophy MLC is charac-

terized by infantile-onset macroce-

phaly and delayed neurological dete-

rioration. The diagnosis is based on

MRI criteria.1 In 2001, causative

mutations of MLC were identified in

MLC1, accounting for approximately

75% of the patients. The fact that

genetic-linkage studies failed to iden-

tify a second gene was ascribed to

further genetic heterogeneity.9,10 We

recently identified two presumably

autosomal recessive, phenotypes

among MLC patients without MLC1
mutations,11 corroborating the notion of genetic heteroge-

neity. We now show that the genetic heterogeneity does

not involve the gene but the mode of inheritance. We cir-

cumvented the problem of genetic heterogeneity by using

a proteomic approach. This method is validated by the

discovery of HEPACAM (hepatic and glial cell adhesion

molecule, MIM 611642) as a gene disrupted in MLC and
Genetics 88, 422–432, April 8, 2011 429



can be considered in the future to identify disease genes for

other rare or genetically heterogeneous disorders.

We prefer the name GlialCAM above HepaCAM for the

related protein. Although the protein was first isolated

from liver and called HepaCAM,21 it was subsequently

found to be predominantly expressed in the central

nervous system and was renamed GlialCAM.18 In the

present paper, we show that mutations in HEPACAM lead

to a neurological phenotype without any sign of liver

involvement.

That mutations in one gene cause both autosomal-

recessive and -dominant disease is rare but not unique.

It has been described for a few other genes, including

LMNA (MIM 150330), SOX18 (MIM 601618), ANK1

(MIM 612641), COL6A1 (MIM 120220), PMP22 (MIM

601097), and MPZ (MIM 159440).22–27 However, patients

with the dominant mutations in these genes do not

display an improving phenotype, as seen in our MLC

patients with dominant HEPACAM mutations. In MLC,

the macrocephaly and cerebral white-matter disease on

MRI arise in the first year of life, the period of most rapid

myelin deposition in the brain. Apparently, MLC1 and

GlialCAM exert their most important function during

this process. The functions of both MLC1 and GlialCAM

are unknown. We, therefore, do not understand the

mechanism of the improving phenotype for the domi-

nant HEPACAM mutations. A hypothetical gene-dose

effect is not supported by the finding that normal

GlialCAM does not partially rescue the localization of

the GlialCAM-MLC1 complex in astrocytes expressing a

dominant HEPACAM mutation. The dominant mutations

are located in a putative pocket of the immunoglobulin

domain and might disrupt interactions with GlialCAM

itself and other unknown molecules.

GlialCAM acts as a MLC1 beta subunit needed for its

correct trafficking to cell-cell junctions. Probably, cis- or

trans-interactions mediated by GlialCAM are necessary

for its correct localization. The function of GlialCAM as

an adhesion molecule suggests that both GlialCAM and

MLC1 have a role in the maintenance of correctly sealed

cell-cell contacts. Interestingly, GlialCAM and not MLC1

is detected in myelin, the place where most vacuoles are

found in MLC.2 GlialCAM is not obligatorily associated

with MLC1, indicating that it might have other functions

by itself or in association with other molecules. Recently, it

has been suggested that MLC1 interacts with the b1

subunit of the Na,K-ATPase pump.28 We did not detect

this protein in our affinity purifications. Further studies

on MLC1-interacting proteins might provide better

insights into the pathophysiology of MLC.

GlialCAM is an interesting protein. In 60% of the

families with dominant HEPACAM mutations, the

affected persons in fact display benign familial macroce-

phaly (MIM 153470). They have macrocephaly, but they

are otherwise normal. MRI shows large but normal

brains. The parents did not undergo MRI as children,

and a transient leukoencephalopathy was not docu-
430 The American Journal of Human Genetics 88, 422–432, April 8, 2
mented in any of them. Benign familial macrocephaly

is most likely genetically heterogeneous, and HEPACAM

is likely to be one of the related genes. Another inter-

esting finding is that in 40% of the patients with a domi-

nant HEPACAM mutation, macrocephaly, and mental

retardation with or without autism, which are known

to be associated features, persist.29 This clinical

syndrome is probably genetically heterogeneous, and

specific HEPACAM mutations could cause it. The fact

that single HEPACAM mutations might be associated

with different phenotypes requires the geneticist to be

cautious when counseling an affected family. From the

age of approximately 2–3 years, the combination of clin-

ical picture and MRI findings allows an accurate predic-

tion of the phenotype.

In conclusion, we have found that HEPACAM is mutated

in MLC. Recessive mutations cause a progressive leukodys-

trophy that is indistinguishable clinically and byMRI from

the disease caused by recessive MLC1 mutations. Domi-

nant mutations can cause transient clinical and MRI

features of MLC, benign familial macrocephaly, and the

clinical syndrome of macrocephaly andmental retardation

with or without autism.
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M.J., Benke, T.A., Wilson, C., Jayakar, P., Aine, M.R., Dom, L.,

et al. (2010). Megalencephalic leukoencephalopathy with

cysts without MLC1 defect. Ann. Neurol. 67, 834–837.

12. Zolles, G., Wenzel, D., Bildl, W., Schulte, U., Hofmann, A.,

Müller, C.S., Thumfart, J.O., Vlachos, A., Deller, T., Pfeifer,

A., et al. (2009). Association with the auxiliary subunit

PEX5R/Trip8b controls responsiveness of HCN channels to

cAMP and adrenergic stimulation. Neuron 62, 814–825.
The Am
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