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Most mitochondrial proteins are synthesized in the cytosol 

and imported into one of the four mitochondrial com-

partments: outer membrane, intermembrane space, inner 

membrane, and matrix. Each compartment contains pro-

tein complexes that interact with precursor proteins and 

promote their transport. These translocase complexes do 

not act as independent units but cooperate with each other 

and further membrane complexes in a dynamic manner. 

We propose that a regulated coupling of translocases is 

important for the coordination of preprotein translocation 

and effi cient sorting to intramitochondrial compartments.

Introduction
Mitochondria synthesize only a small number of proteins in their 

matrix. 99% of the �1,000 different mitochondrial proteins are 

produced on cytosolic ribosomes and are imported into the organ-

elle (Sickmann et al., 2003; Prokisch et al., 2004; Dolezal et al., 

2006; van der Laan et al., 2006a). The classic pathway of protein 

import into mitochondria involves N-terminal presequences on 

the precursor proteins (Fig. 1). The presequences target the pro-

teins to receptors of the translocase of outer mitochondrial mem-

brane (TOM) complex. After translocation through the TOM 

channel, the preproteins are directed to the TIM23 (presequence 

translocase of inner mitochondrial membrane) complex. The pre-

sequence translocase-associated motor (PAM) completes pre-

protein translocation into the matrix. Here, the mitochondrial 

processing peptidase removes the presequences, and the proteins 

are folded to their mature forms.

However, many mitochondrial precursor proteins are not 

synthesized with cleavable presequences but possess internal tar-

geting signals. Although the TOM complex functions as the cen-

tral import site for most precursors, the subsequent transport of 

proteins to the four mitochondrial compartments is mediated by 

different machineries. Three main import pathways for noncleav-

able precursor proteins have been defi ned (Fig. 1). (1) The pre-

cursors of outer membrane β-barrel proteins are transferred by 

the Tim9–Tim10 chaperone complex to the sorting and assembly 

machinery (SAM) complex of the outer membrane (Wiedemann 

et al., 2003, 2004; Hoppins and Nargang, 2004). (2) Multispanning 

proteins of the inner membrane like the metabolite carriers also 

use the Tim9–Tim10 chaperone complex to traverse the inter-

membrane space and are inserted into the inner membrane by the 

TIM22 (carrier translocase of inner mitochondrial membrane) 

complex (Curran et al., 2002; Vial et al., 2002; Rehling et al., 

2003). (3) Many proteins of the intermembrane space contain cys-

teine motifs and are imported and oxidized by the mitochondrial 

intermembrane space assembly system (Chacinska et al., 2004; 

Naoé et al., 2004; Allen et al., 2005; Mesecke et al., 2005).

The protein translocases in the four mitochondrial com-

partments do not function as independent complexes but co-

operate in a dynamic manner. This includes transient contacts 

between translocases located in different compartments and the 

involvement of protein complexes that have previously been 

thought not to be related to protein biogenesis, such as the respi-

ratory chain and mitochondrial morphology components.

Transient connection of outer and inner 
membrane translocases
Cleavable preproteins are guided into mitochondria by a chain 

of sequential binding sites for presequences, including the re-

ceptor domains of Tom20 and Tom22, the channel formed by 

Tom40, and the intermembrane space tail of Tom22 (Fig. 2; 

Komiya et al., 1998; Abe et al., 2000; Chacinska et al., 2005). 

Tom40 is not simply a passive channel but recognizes the pre-

sequences and participates in the selection of precursors for the 

subsequent sorting pathways (Gabriel et al., 2003). It has been 

a long-standing question of how preproteins are transferred 

from the TOM complex to the TIM23 complex of the inner 

membrane. Models ranged from a permanent TOM–TIM con-

nection to two fully independent translocase complexes.

The identifi cation of Tim50 and Tim21 as new subunits of 

the TIM23 complex revealed a dynamic mechanism of TOM–

TIM cooperation (Geissler et al., 2002; Yamamoto et al., 2002; 
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Chacinska et al., 2005). In the absence of preproteins, Tim50 

keeps the inner membrane channel formed by Tim23 in a closed 

state (Meinecke et al., 2006). As soon as preproteins emerge from 

the Tom40 channel, Tim50 binds to them and stimulates inter-

action of the presequence with the intermembrane space tail of 

Tom22. Thus, remarkably, a Tim protein helps a preprotein in 

transit to make contact with the trans-side of the TOM machinery. 

Subsequently, Tim21 binds to Tom22, representing a direct but 

transient interaction between TOM and TIM during protein im-

port (Fig. 2, stage 2). Presequences and Tim21 compete for binding 

to the intermembrane space tail of Tom22. Thereby, Tim21 induces 

a release of the presequence from Tom22 and promotes transfer of 

the preprotein to the next stage, insertion into the inner membrane 

(Chacinska et al., 2005; Albrecht et al., 2006). Presequence bind-

ing to Tim23 completes the chain of binding sites for preproteins 

on the way from TOM to TIM (Truscott et al., 2001).

Sorting switch of the presequence 
translocase: alternative binding of 
respiratory chain and import motor
Transport of presequences through the TIM23 complex is driven 

by the inner membrane potential ∆ψ, which performs a dual 

role. It activates the channel protein Tim23 and drives transloca-

tion of the positively charged presequences by an electrophoretic 

mechanism (Truscott et al., 2001). Now, a decision has to be 

made about the further pathway of the preprotein: either lateral 

sorting into the inner membrane or complete transport into the 

matrix. Recent studies showed that two different modular forms 

of the presequence translocase exist (Chacinska et al., 2005; 

van der Laan et al., 2006b). The core of both forms consists of 

Tim50, Tim23, and Tim17, whereas the presence of additional 

subunits or partners depends on the import route of the preprotein 

in transit (Chacinska et al., 2005). The sorting form of the TIM23 

complex, which is responsible for lateral release of proteins into 

the inner membrane, contains Tim21 but not the import motor PAM 

(Fig. 2, stage 3a), whereas the matrix transport form of TIM23 

lacks Tim21 but is associated with the multicomponent PAM 

machinery (Fig. 2, stage 3b).

Several preproteins carry a hydrophobic segment behind 

the presequence (Fig. 2, preprotein type a). This sorting signal 

stops translocation across the inner membrane, and the protein 

is released into the lipid phase by the motor-free TIM23 com-

plex (Fig. 2, stages 3a and 4a; Chacinska et al., 2005). Surprisingly, 

Tim21 was found to recruit a supercomplex of the mitochon-

drial respiratory chain consisting of the bc1 complex and cyto-

chrome c oxidase (Fig. 2, stage 3a; van der Laan et al., 2006b). 

What could be the function of a direct association between 

TIM23 and the respiratory chain? Lateral sorting into the inner 

Figure 1. Mitochondrial import pathways for precursor proteins. Nuclear-encoded mitochondrial proteins are imported by the TOM complex. Sub-
sequently, they follow different pathways. Presequence-carrying proteins are transported by the TIM23 complex and the motor PAM into the matrix, where 
mitochondrial processing peptidase (MPP) cleaves off the presequences. Small proteins of the intermembrane space (IMS) are imported via the mito-
chondrial intermembrane space assembly machinery (MIA). β-barrel precursors of the outer membrane (OM) are transferred by the Tim9–Tim10 chaperone 
complex from TOM to SAM. Precursors of inner membrane (IM) carriers use Tim9–Tim10 for transfer to the TIM22 complex that drives insertion into 
the inner membrane. 
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membrane can be driven by the electrochemical potential as the 

only external energy source without a requirement for the ATP-

dependent motor PAM. Indeed, upon lowering of the overall 

electrochemical potential of the inner membrane, TIM23 com-

plexes that are in the direct vicinity of the respiratory chain are 

still competent in preprotein insertion, whereas other transport 

processes across the inner membrane are diminished (van der Laan 

et al., 2006b). We envisage two possibilities. The proton motive 

force may be higher in close proximity to a proton-pumping 

complex, or protons may be directly translocated to the TIM23 

complex and facilitate preprotein transport.

However, the majority of presequence-carrying prepro-

teins are completely translocated into the matrix. To perform this 

task, the TIM23 complex associates with PAM, which consists 

of several modules (Fig. 2, stage 3b; Chacinska et al., 2005; 

Mokranjac et al., 2007). Mitochondrial heat-shock protein 70 

(Hsp70 [mtHsp70]) is the central component of PAM. This 

molecular chaperone binds unfolded preproteins in an ATP-

regulated manner. Four membrane-bound cochaperones, Tim44, 

Pam18, Pam17, and Pam16, interact with the TIM23 complex 

and coordinate the function of mtHsp70 directly at the TIM 

channel. Tim44 provides a binding site for mtHsp70, whereas 

the J protein Pam18 (Tim14) stimulates the ATPase activity 

of mtHsp70. Pam16 (Tim16) regulates the activity of Pam18, 

and Pam17 is required to organize the Pam18–Pam16 module 

(D’Silva et al., 2005; van der Laan et al., 2005; Mokranjac et al., 

2007). Finally, mitochondrial GrpE (Mge1) promotes release of 

the nucleotides from mtHsp70, completing the motor reaction 

cycle. Thus, PAM is a multistep motor that involves a coor-

dinated action of membrane-bound and soluble proteins to 

promote the unfolding of preproteins and drive them into the 

matrix (van der Laan et al., 2005; Wilcox et al., 2005).

Collectively, the TIM23 complex functions at a junction 

of protein import. Three partner complexes interact with TIM23 

in an alternating manner: the TOM complex in early transfer 

from outer membrane to inner membrane, the respiratory chain 

for promoting sorting into the inner membrane, and PAM for 

translocation into the matrix. Tim21 alternates between binding 

to TOM and the respiratory chain (van der Laan et al., 2006b), 

whereas Tim17 is involved in the switch between inner membrane 

sorting and PAM binding (Chacinska et al., 2005). We propose 

that cooperation of the TIM23 complex with its partner com-

plexes involves more than one interaction site in each case. 

For the TOM–TIM connection, Tim50 was found to cooperate 

Figure 2. The presequence translocase of the inner membrane cooperates with different partner complexes. Preproteins with cleavable presequences are 
targeted to the TOM complex (stage 1). Upon translocation through the Tom40 channel, Tim50 interacts with the preprotein, and the presequence binds to 
the intermembrane space (IMS) tail of Tom22. Subsequently, Tim21 binds to Tom22 and promotes release of the presequence (stage 2). The presequence 
inserts into the Tim23 channel. Then, two pathways are possible. Pathway a: preproteins with a hydrophobic sorting (stop transfer) signal are laterally 
released into the inner membrane (IM) by a Tim21-containing motor-free TIM23 complex; interaction of the TIM23 complex with the bc1 complex and cyto-
chrome c oxidase (COX) of the respiratory chain stimulates the membrane potential–driven sorting step. Pathway b: preproteins that only carry a 
matrix-targeting signal are transported into the matrix by a TIM23 complex that associates with the motor PAM. OM, outer membrane; MPP, mitochondrial 
processing peptidase. 
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with Tim21 (Chacinska et al., 2005), whereas for the coupling 

to respiratory chain and PAM, further interacting partners have 

to be defi ned in future studies. As the TIM23–respiratory chain 

interaction is impaired but not blocked by the deletion of 

Tim21 (van der Laan et al., 2006b), the existence of at least one 

more interaction site is apparent.

Cooperation of chaperones and 
translocases in the import of 
multispanning membrane proteins
Most mitochondrial membrane proteins with several transmem-

brane segments (multispanning proteins) are synthesized with-

out cleavable presequences. Two major classes are the β-barrel 

proteins of the outer membrane and the metabolite carriers of 

the inner membrane (Fig. 3). To prevent aggregation of the hydro-

phobic precursors, chaperones operate at several stages of the 

biogenesis pathway. For transfer from cytosolic ribosomes to the 

Tom receptors, chaperones of the Hsp90 and Hsp70 classes bind 

to the precursors (Fig. 3, stage 1; Young et al., 2003; Humphries 

et al., 2005). The receptor Tom70 possesses a specifi c binding 

site for the chaperones, and, thus, the precursor–chaperone com-

plex docks onto Tom70 and delivers the substrate. Tom70 oligo-

merizes in the presence of substrate such that several Tom70 

molecules bind to one precursor polypeptide and prevent aggre-

gation during transfer to the Tom40 channel (Wiedemann et al., 

2001; Esaki et al., 2003).

The intermembrane space is an aqueous compartment, 

and hydrophobic proteins would aggregate here. Therefore, the 

intermembrane space contains a soluble translocase, the Tim9–

Tim10 complex, which binds to the precursors of carrier pro-

teins as soon as part of the polypeptide chain has traversed the 

Tom40 channel (Wiedemann et al., 2001). Tim9–Tim10 forms a 

hexameric TIM chaperone complex that protects the hydrophobic 

segments of precursors from aggregation (Curran et al., 2002; 

Vial et al., 2002; Webb et al., 2006). The carrier precursors do 

not cross the outer membrane as linear polypeptide chain–like 

cleavable preproteins but are translocated through Tom40 in a 

loop formation (Fig. 3, stage 2). Precursor release from TOM 

requires an active TIM chaperone complex, indicating a close 

cooperation of both translocases (Wiedemann et al., 2001; Zara 

et al., 2001; Truscott et al., 2002). The intermembrane space 

contains a second TIM chaperone complex, the Tim8–Tim13 

complex, which is homologous to the Tim9–Tim10 complex 

and interacts with a subset of hydrophobic precursor proteins 

(Hoppins and Nargang, 2004; Davis et al., 2007).

The Tim9–Tim10 chaperone delivers the carrier precursors 

to the TIM22 complex. This involves a rearrangement of the 

chaperone at the surface of the inner membrane. Tim12, a small 

Tim protein peripherally bound to the TIM22 complex, associ-

ates with Tim9 and Tim10 in a ternary complex, and so these 

small Tim proteins become membrane bound (Fig. 3, stage 3b; 

Murphy et al., 2001; Gentle et al., 2007). The TIM22 complex 

contains three integral membrane proteins: Tim54, Tim22, and 

Tim18. Tim22 is the channel-forming protein and mediates pro-

tein insertion into the inner membrane in a membrane potential–

driven manner (Rehling et al., 2003). It is not known which 

of the three integral subunits binds the small Tim proteins. 

We speculate that Tim54, with its large domain in the intermem-

brane space, functions as a docking site for small Tim pro-

teins at the carrier translocase.

The TIM chaperone complexes cooperate with a third 

membrane translocase, the SAM complex of the outer mem-

brane (Wiedemann et al., 2003). Upon translocation via the 

Tom40 channel, the precursors of β-barrel proteins bind to 

Tim9–Tim10 or Tim8–Tim13 and are transferred to SAM (Fig. 3, 

stage 3a; Hoppins and Nargang, 2004; Wiedemann et al., 2004). 

Precursor insertion into the outer membrane is initiated by Sam50 

(Omp85/Tob55), the central component of the SAM complex 

(Kozjak et al., 2003; Gentle et al., 2004; Habib et al., 2007). 

It is not yet known whether Sam50 provides a direct inter-

action site for the TIM chaperones.

In summary, the soluble TIM chaperone complexes, 

Tim9–Tim10 and Tim8–Tim13, provide a shuttle system be-

tween TOM and the membrane insertases TIM22 and SAM 

and, thus, ensure that precursors are kept in a translocation-

competent conformation.

Linking mitochondrial morphology to outer 
membrane protein assembly
The outer membrane SAM complex contains three core compo-

nents: the channel-forming protein Sam50, Sam37, and Sam35 

(Wiedemann et al., 2003; Gentle et al., 2004; Ishikawa et al., 

2004; Milenkovic et al., 2004; Habib et al., 2007). Sam50 is a 

β-barrel protein itself. The lateral opening of a β-barrel protein 

is energetically unfavorable, as many hydrogen bonds would have 

to be broken. We envisage that the β-barrel precursors, which 

are delivered by the TIM chaperones, may insert between several 

Sam50 molecules and, thus, have access to the lipid phase (Fig. 3, 

stage 3a). The exact function of Sam35 and Sam37 is not yet 

known. They likely participate in the insertion and lateral release 

of precursor proteins.

Sam50 is homologous to Omp85/YaeT of Gram-negative 

bacteria, implying a conserved mechanism of β-barrel insertion 

in mitochondria and bacteria (Voulhoux et al., 2003; Wu et al., 

2005; Dolezal et al., 2006; Bredemeier et al., 2007). However, 

the partner proteins of Sam50 and Omp85/YaeT are not homol-

ogous to each other. In addition, as the lipid composition of bacte-

rial and mitochondrial outer membranes differs considerably, 

it is likely that the mitochondrial assembly machinery was orig-

inally derived from the bacterial one but underwent substantial 

changes during evolution.

Further characterization of the SAM pathway revealed an 

unexpected connection to the machinery that maintains mito-

chondrial morphology. A fourth subunit found in a fraction of 

SAM complexes turned out to be the morphology protein Mdm10 

(Meisinger et al., 2004). Mdm10 is required to assemble β-barrel 

precursors, in particular the precursor of Tom40, into functional 

complexes. Mdm10 not only associates with the SAM complex but 

also with two further morphology proteins, Mdm12 and Mmm1, 

to form a different complex (Boldogh et al., 2003; Meisinger 

et al., 2007). Remarkably, this mitochondrial distribution and 

morphology (MDM) complex is also required for the β-barrel 

assembly pathway of the mitochondrial outer membrane at a 

stage after the SAM core components (Fig. 3, stages 3a to 4a). 
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The MDM complex possibly mediates the cooperation of 

both mitochondrial membranes because MDM proteins are 

enriched in punctate structures near contact sites of outer and 

inner membranes (Aiken Hobbs et al., 2001; Boldogh et al., 

2003, Kondo-Okamoto et al., 2003, Jensen, 2005). It should 

be emphasized that the majority of proteins that were reported 

to function in the maintenance of mitochondrial morphology 

are not involved in the assembly of β-barrel proteins (Meisinger 

et al., 2007). Only a subset of morphology proteins associat-

ing with the SAM complex or the MDM complex perform 

a primary function in protein assembly. As their function 

involves the biogenesis of the TOM complex (i.e., assembly 

of the main entry gate of mitochondria), a defect of these 

morphology proteins leads to a defect of the TOM complex 

and, consequently, to a defect in the import of genuine mor-

phology components.

We are just beginning to understand how the interplay 

between TOM, SAM, and MDM complexes is organized. 

Tom7, a small subunit of the TOM complex, plays a second 

role outside the mature TOM complex. Tom7 regulates the 

association of Mdm10 with the SAM complex in an antago-

nistic manner. Upon deletion of Tom7, the amount of Mdm10 

at the SAM complex is increased, and the assembly of Tom40 

is accelerated (Meisinger et al., 2006). Thus, Tom7 has two 

functions. It is a subunit of the mature TOM complex and acts 

as a negative regulator of the assembly pathway of Tom40. 

We suggest that the biogenesis of outer membrane β-barrel 

proteins involves a dynamic cooperation of TOM, TIM chap-

erones, SAM, and MDM to ensure an effi cient and regulated 

transfer of precursor proteins.

Conclusions and perspectives
We suggest a new level of organization of the mitochondrial 

protein import machinery. Although the initial characterization 

of protein transport led to the identifi cation of numerous com-

ponents and their presence in stable translocase complexes, we 

have reviewed here that the translocases are highly dynamic 

machineries. Depending on the sorting signals present in pre-

cursor proteins, the translocases undergo modular rearrange-

ments and transiently interact with each other. Importantly, this 

involves a dynamic interaction between transport complexes 

located in different mitochondrial compartments, such as the 

TOM–TIM23 connection, the TIM23–PAM interaction, and the 

cooperation of TIM chaperones of the intermembrane space 

with translocases of both outer and inner membranes. The co-

operation not only involves the known translocases but also 

complexes that have not been related to protein import so far, 

such as the respiratory chain and the MDM complex.

The dynamic nature of the protein import machinery is 

also refl ected in increasing evidence that transport components 

perform two or more functions or interact with alternating part-

ners. We outlined the examples of Tom22, Tim50, Tim21, and 

Tim17 in the TIM23 reaction cycle, the cooperation of Tim9–

Tim10 with three different translocases, and the dual role of 

Tom7 as TOM subunit and regulator of Mdm10. Seeing this 

growing list, we speculate that import components that play 

Figure 3. The Tim9–Tim10 chaperone complex cooperates with translocases of both mitochondrial membranes. The import pathways of two classes of 
multispanning membrane proteins are shown: β-barrel proteins of the outer membrane (OM; Pathway a) and carrier proteins of the inner membrane (IM; 
Pathway b). The precursors are delivered to the TOM complex with the help of cytosolic chaperones (stage 1). The Tim9–Tim10 complex binds to precursors 
emerging on the intermembrane space (IMS) side of Tom40 (stage 2). β-barrel precursors are transferred to the SAM complex (stage 3a) that cooperates 
with the MDM complex for membrane insertion and protein assembly (stage 4a). Carrier precursors dock onto the TIM22 complex via the Tim9–Tim10–
Tim12 module. Tim22 inserts the precursors into the inner membrane in a membrane potential (∆ψ)–driven process. 
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more than one function are much more common than antici-

pated. Multifunctionality of an import component may be the 

rule, not the exception.

The rapid increase in knowledge of the cooperation of pre-

protein translocases suggests that future studies will reveal more 

dynamic interactions between translocases, be it for preprotein 

transfer or for regulatory purposes. For example, the three stages 

defi ned for the TIM23 reaction cycle likely represent only snap-

shots that are accessible to our current experimental tools. It is 

conceivable that the switch between inner membrane sorting and 

motor binding occurs in several intermediate steps (e.g., for pre-

proteins, which possess a sorting signal but also contain folded 

domains that require the unfolding power of PAM). We speculate 

that TOM, SAM, and MDM may be organized in transient, larger 

assemblies. Moreover, the inner membrane contains machineries 

for the export of mitochondrially encoded proteins from the 

 matrix (Frazier et al., 2006; Ott et al., 2006; Jia et al., 2007). 

It will be interesting to see whether these export machineries co-

operate with the TIM import machineries.

A cooperation of machineries and components located in 

different compartments of mitochondria is not only important 

for protein biogenesis but also for tethering mitochondria to 

the cytoskeleton, for fusion and fi ssion of the mitochondrial 

membranes, and for apoptotic processes (Jensen, 2005; Meeusen 

and Nunnari, 2005; Okamoto and Shaw, 2005; Perfettini et al., 

2005). Thus, a characterization of the mechanisms, which co-

ordinate and regulate the activities of both mitochondrial mem-

branes and the two aqueous compartments, will be a major 

challenge toward a molecular understanding of this highly dynamic 

cell organelle.
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