MAPPIT and Co: analytical and high-throughput protein-protein interaction mapping in human cells.

Tavernier Jan

Chair, Department of Biochemistry
Head, Cytokine Receptor Lab
Center for Medical Biotechnology, VIB, Ghent University, A. Baertsoenkaai 3, 9000 Ghent, Belgium

Abstract

MAPPIT (Mammalian Protein-Protein Interaction Trap) is a cytokine receptor-based two-hybrid method that operates in intact mammalian cells (www.mappit.be, 1). This MAPPIT approach was over the years advanced into a technology suite for detailed mapping analysis of selected protein-protein and protein-small molecule interactions (reviewed in 2) in a close-to-normal physiological context. MAPPIT can also be applied as a validation tool for large-scale protein interactomics of yeast (3), C. elegans (4) and man (5). I will illustrate these opportunities and also the limitations of MAPPIT using specific examples.

More recently, the MAPPIT platform was miniaturized allowing large-scale interactomics in human cells. In its current setup, a collection of 17.000 human ORF preys can be interrogated against a selected bait using a highly-automated reverse transfection assay (6). With KISS (Kinase-Substrate Sensor), an alternative strategy was recently devised that accommodates analysis of full-size transmembrane and nuclear proteins, but uses the same read-out as the MAPPIT system (7). We expect that a combination of both methods will allow comprehensive analysis of a wide range of protein-protein interactions in intact human cells.

- (1) Eyckerman et al., Nat Cell Biol 3, 1114-1119 (2001)
- (2) Lievens et al., Cytokine Growth Factor Rev 22, 321-329 (2011)
- (3) Yu et al., Science 322, 104-110 (2008)
- (4) Simonis et al., Nat Meth 6, 47-53 (2009)
- (5) Rolland et al., Cell 159, 1212-1226 (2014)
- (6) Lievens et al., Mol Cell Proteomics 15, 3642-3639 (2016)
- (7) Lievens et al., Mol Cell Proteomics 13, 3332-3342 (2014)