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a b s t r a c t

There is emerging evidence from functional analyses and molecular research that the role of ion chan-
nels in cell physiology is not only determined by the pore-forming subunits but also depends on their
molecular environment. Accordingly, the local and temporal specificity of channel-mediated signal trans-
duction is thought to result from association of these integral membrane proteins with distinct sets of
partner proteins or from their assembly into stable macromolecular complexes. As yet, however, the
molecular environments of most ion channels have escaped direct investigation, mostly because of tech-
nical limitations that precluded their comprehensive molecular analysis. Recent advances in proteomic
technologies promoted an experimental workflow that combines affinity purification of readily solubi-
lized protein complexes with quantitative high-resolution mass spectrometry and that offers access to
channel-associated protein environments. We will discuss advantages and limitations of this proteomic
approach, as well as the results obtained from its application to several types of ion channels including
Cav channels, Kv channels, HCN channels, AMPA-type glutamate receptors and GABAB receptors. The
respective results indicate that the approach provides unbiased and comprehensive information on (i)
the subunit composition of channel cores including identification of auxiliary subunits, on (ii) the assem-
bly of channel cores into ‘signaling entities’ and on (iii) integration of channels into extended protein
networks. Thus, quantitative proteomics opens a new window for the investigation of ion channels and
their function in the context of various types of cell.

© 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

The major tasks of ion channels in the central nervous system
(CNS) – as in most other excitable tissues – are perception, process-
ing and propagation of electrical signals as the fundamentals for
cell–cell communication. For these purposes the channel-mediated
signaling must exhibit exquisitely high precision in both time and
(subcellular) space and display activity-dependent dynamics as
required for promoting storage and retrieval of bits of informa-
tion. Molecular and functional investigations offer more and more
evidence that these characteristics cannot be exclusively met by
the pore-forming subunits of ion channels operating as stand-alone
tools. Rather, channel-mediated signaling is thought to result from
multiple protein–protein interactions, transient or stable in nature,
occurring in the ‘molecular environments’ of the ion channel pro-
teins.

Conceptually, these molecular environments are formed by pro-
teins that are either directly or indirectly associated with the
pore-forming ! subunits and that are able to modulate channel
properties and processing, affect downstream signaling pathways
or shape spatio-temporal concentration gradients of ions and other
diffusible messengers. In the literature, molecular environments
are often referred to as micro- or nano-domains, depending on their
structural dimensions and are thought to represent a general prin-
ciple for how membrane protein-based signaling is organized to
guarantee specificity and adequate rate of signal transduction. As
a result, ion channels embedded in such entities may exhibit vari-
able properties and functions depending on the state of excitation
and level of activity, subcellular localization, developmental stage
of the cell and expression of distinct sets of partner proteins.

Despite their fundamental importance, the present knowledge
on molecular environments of ion channels is rather limited, mostly
because of technical problems including poor solubilization, small
amounts of source material and lack of sensitive protein analysis
techniques that have precluded their experimental access for a long
time. Recent developments in both biochemistry and mass spec-
trometry, however, enabled the first comprehensive investigations
of channel-associated environments and unbiased identification
of the respective protein constituents. In this review we will first
introduce the novel approach of ‘functional proteomics’ and then
discuss the results obtained with their application to various ion
channels in the CNS.

2. Approach of ‘functional proteomics’: strategy and
experimental workflow

A broad range of approaches has been used for identification
of ion-channel associated proteins, including recombinant high-
throughput assays such as the conventional yeast-two-hybrid or
the split-ubiquitin platforms [1,2], genetic screens [3,4] and link-
age studies [5,6], biochemical cross-linking experiments [7,8] and
affinity-based co-purification [9,10]. The latter has recently been
coupled with unbiased protein identification by mass spectrome-
try [2,11–13], a combination referred to as AP-MS [14] or functional
proteomics. Although each method offers distinct advantages and is
capable of identifying individual protein-protein interactions, func-
tional proteomics is the only approach providing a comprehensive
view on protein assemblies formed in native systems at all levels
of complexity. When combined with adequate controls and quan-

titative evaluation procedures, it also delivers highly reliable and
detailed results, key advantages in the light of rather costly and
laborious functional follow-up work.

2.1. Protein complexes and networks

Apart from the availability of powerful tools and technologies,
the success of proteomic approaches is based on the kinetic stability
of biochemical protein–protein interactions during their isolation
from cells and tissues. These stable interactions give rise to higher-
order protein assemblies that, together with membrane-based
compartmentalization, form the structural and organizational
framework of any living system [15]. With regard to ion chan-
nels, assemblies with distinct biochemical properties and different
levels of complexity have been detected and isolated from physio-
logical systems (Fig. 1). Thus, ion channel complexes1 are formed
by pore-forming ! ubunits, auxiliary (") subunits and other sta-
bly associated proteins with a defined (saturable) stoichiometry.
They may contain up to eight or more proteins and typically range
from 200 to 1000 kDa in size [11,16–18]. Larger functional units
made up from stable assemblies of distinct and functionally inde-
pendent protein complexes, like channel–channel complexes [16],
enzyme–channel complexes [19] or receptor-channel complexes
[20] may be termed supercomplexes (as proposed by Schägger
and Pfeiffer [21]). Finally, ion channels may be associated with a
multitude of other proteins and protein complexes into extended
networks,1 as found for postsynaptic NMDA receptors [22] and
presynaptic Cav2 channels [23]. Although all these protein assem-
blies can essentially be resolved by functional proteomics, they
present with distinct technical challenges: For example, supercom-
plexes tend to be biochemically unstable and are, therefore, hard
to isolate [16,21]; protein networks are difficult to resolve on a
molecular level due to their heterogeneous composition, extended
surface for non-specific binding, and poorly defined boundaries.

2.2. Functional proteomics: overview

The introduction of liquid nano-HPLC coupled high-resolution
mass spectrometry (nano-LC–MS/MS [24]) promoted the revival
of the rather classical AP approach [14,25]. The ability to identify
and quantify hundreds of proteins in affinity-purified protein sam-
ples has opened a new dimension of studying protein interaction
complexity, but also uncovered a broad spectrum of experimental
artifacts. This has stimulated the development of more elabo-
rate workflows with multiple APs, stringent quality controls and
advanced evaluation tools. A schematic overview of proteomic
techniques used to characterize protein complexes and higher-
order assemblies is depicted in Fig. 2. The displayed methods and
steps have been optimized to address the major technical issues, as
discussed in more detail in the following sections:

(1) Extraction of the target proteins from native source material
under conditions preserving their association with other pro-
teins, relative abundance levels and modification status.

1 Note: It should be noted that the terms “complex” and “network” are frequently
used to describe entities that are not biochemically tangible, like proteins interacting
functionally or temporarily, or virtual protein interaction clusters.
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Fig. 1. Organization of ion channel-associated proteins as complexes (top), supercomplexes representing signaling entities (middle), and membrane-associated protein
networks (bottom). The core complex is coloured in red; note that these types of assembly may co-exist and dynamically interconvert in native cells.

(2) Efficient, specific and representative purification of solubilized
target protein assemblies.

(3) Unbiased identification and quantification of proteins with high
sensitivity and over a broad range of abundances.

(4) Processing and biochemical interpretation of the complex AP
and control datasets obtained from MS analysis.

The displayed proteomic workflow is not yet widely distributed,
and until now only a few ion channels have been analyzed using a
comparable approach ([11,12,16,23,26–29]; see also Table 1).

2.3. Preparation of protein assemblies from native tissue

The first step in isolating membrane proteins is the preparation
of source material, membrane vesicles from cells and tissue. Differ-
ent protocols have been described, either for preparation of total
membranes or aiming at enrichment of specific subcellular com-
partments. Apart from feasibility considerations, there are several
factors to be considered:

- Only about 5% of the total cellular protein is associated with the
plasma membrane.

- Cytosol and some organelles like mitochondria or ribosomes
contain highly abundant proteins that tend to enhance the back-
ground of APs and thereby reduce the sensitivity of the approach
[14,25].

- Any pre-fractionation step introduces biases that may strongly
affect the outcome of the approach (e.g. effective co-purification
of !2# subunits with the voltage-gated calcium channels through
pre-enrichment by lectins [30]).

- In contrast to a widespread assumption that cell physiological
relevance is confined to proteins directly associated with ion

channels at the plasma membrane, proteins involved in proper
maturation, trafficking or degradation of channel proteins and/or
complexes might be highly relevant and should, therefore, not be
excluded from any study.

- Finally, it appears noteworthy that even the most elaborate mem-
brane preparation is of limited purity (<90%) and may be rather
disadvantageous given the substantial loss of material usually
encountered by multi-step isolations and the concomitant nega-
tive effects on the structural integrity of proteins.

Consequently, ‘plasma-membrane enriched fractions’ that are
partially depleted of mitochondria, nuclei and cytoplasm, but
contain all vesicular structures related to the plasma membrane
appear a reasonable compromise between purity, completeness
and integrity [31,32].

Solubilization of the membrane protein assemblies is the sec-
ond experimental step (Fig. 2), mandatory and critical due to the
required use of detergents. Many different detergents have been
described for this application, most of them neutral, anionic or
mixtures thereof, but systematic investigations are lacking. Solubi-
lization buffers have a large impact on the proteomic approach, as
not only the target ion channel but also putative (or often unknown)
partner proteins must be effectively solubilized. With this respect,
a few points must be considered:

- Detergents inevitably affect protein–protein interactions, par-
ticularly those occurring within the lipid bilayer that depend
on binding to specific lipids or that are stabilized mainly by
hydrophobic forces.

- Furthermore, detergents are known to at least partially denature
proteins, thereby adding to the protein background in subsequent
purification steps.
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Fig. 2. Workflow of the ‘functional proteomics’ approach (see text for details). Arrows indicate how individual methods and steps are combined (green) and results are fed
back (blue) to obtain optimal results.
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- Finally, a number of detergents exhibit individual unfavor-
able effects. Thus Triton X100 and related polyethoxy alkyl/aryl
derivatives have a tendency to induce phase separations in
lipid bilayers, thereby leading to ‘insoluble’ vesicular structures
strongly enriched in certain membrane proteins and incorrectly
referred to as ‘lipid rafts’ [33]. Digitonin, a natural saponin and
mild detergent, exhibits strong batch-to-batch variation in qual-
ity and is well known for forming irreversible precipitates with
cholesterol [34] absorbing hydrophobic proteins.

To achieve reasonable balance between experimental require-
ments and conservation of protein structures, and to minimize
detergent-related artifacts, the effects of solubilization must be
carefully monitored. Solubilization efficiency may be tested in
a straight-forward manner by Western blotting as illustrated in
Fig. 2 (inset ‘solubilization’). Effects on complex integrity can
be thoroughly monitored by native gel electrophoresis [16,21];
incorporation of a target protein into higher molecular weight
complexes under different solubilization conditions can be quan-
titatively analyzed (Fig. 2; inset ‘native PAGE’). The structural
integrity of solubilized ion channel complexes can be further
tested in ligand binding assays [35,36], reconstitution experiments
[37,38], or by probing known interaction partners in test APs as
positive controls.

It is noteworthy that despite the severe effects of insufficient or
disruptive solubilization, these issues are often neglected in pro-
teomic studies.

2.4. Affinity purification of target protein assemblies

APs are predominantly performed with target-specific antibod-
ies, more rarely with fusion proteins or low-molecular weight
ligands. Although these tools theoretically allow for rapid and
strong enrichment of target proteins, they may have critical adverse
effects. A major concern is specificity, since many antibodies also
bind to proteins independent from the target. Such unpredictable
cross-reactivities can be as high in affinity as that for the primary
target and sometimes even dominate the AP (for example, the
APC-107 anti-BK! antibody (Alomone) strongly cross reacts with
dynamin 1 (unpublished observation, but compare [39]). Thus, in
addition to general background resulting from surfaces of the affin-
ity matrix and incubation tubes, antibodies may add a multitude of
non-specific proteins through their direct or indirect cross reactiv-
ities. A recent study, in which several antibodies were tested in APs
from wildtype and compared to knockout controls suggested that
around 50% of co-purified proteins may in fact result from antibody
off-target effects [23]. Conversely, antibodies may also cause false-
negative results. Due to their molecular size and sterical shielding of
target epitopes by associated proteins, antibodies may selectively
bind to certain subsets of target assemblies, potentially missing
major populations of interaction partners. Even worse, antibod-
ies with very high affinity for a particular epitope conformation
may actually disrupt target protein assemblies [40]. Not surpris-
ingly, both of these effects may be more frequently observed with
monoclonal antibodies [41].

Thus, the AP step represents a major source of error and must be
strictly controlled (Fig. 2, inset ‘affinity purification’). General back-
ground should be minimized by adjustment of AP conditions, the
remaining level is usually controlled by comparison with APs using
non-specific pre-immunization IgGs. It should be noted, however,
that loading of antibodies with protein assemblies also increases
the surface available for non-specific binding. This effect has to be
taken into account when defining specificity thresholds (see below)
to avoid misinterpretation of pseudo-enriched proteins. Any off-
target effects can be effectively eliminated by using control APs
with membranes isolated from target knockout tissues [12,29]. In

case genetic knockouts are not available, control material could also
be generated by biochemical depletion of the target with a second
antibody (’biochemical knock out’). Selection biases and structural
interference with target complex integrity are more difficult to
address. A simple but important quality control is verification of
AP efficiency, which can be monitored by Western blot analysis of
samples taken before and after AP. Antibodies that fail to deplete
their target protein from the solubilisate are likely not co-purifying
the complete spectrum of interaction partners. In addition, the
use of multiple antibodies targeting different epitopes combined
with consistency filtering (see Section 2.5) has been shown to suc-
cessfully eliminate artifacts introduced by individual antibodies
[23].

2.5. Qualitative and quantitative mass spectrometry

Mass spectrometry has emerged as the most powerful tech-
nology for unbiased identification and quantification of proteins.
Current LC–MS/MS instruments of choice are capable of reliably
identifying hundreds of proteins with a sensitivity of ≤1 femtomol
in a single run [42,43]. This high performance is achieved by the
optimized and inline combination of nano-HPLC separation, elec-
trospray ionization, signal-dependent fragmentation in a linear ion
trap and precise m/z detection, as depicted in Fig. 2 (inset ‘mass
spectrometry’). In the most widely used setup, protein samples
are first digested with trypsin – either in solution or as lanes from
silver stained gels – to obtain defined peptides of suitable length
(ideally between 6 and 25 amino acids). These peptide mixtures
are then resolved by reverse phase nano-HPLC, either directly or
subsequent to loading on a pre-column. Eluting peptides are then
electrospray-ionized (ESI) and collected in the linear ion trap, from
which they are either forwarded to the mass analyzer for high
resolution intensity over m/z detection (precursor ion spectrum,
LC–MS), or selectively fragmented by collision with gas molecules
(CID) for recording of fragment ion spectra (MS/MS). The combined
information of accurate peptide pre-cursor mass and fragment ion
patterns is then extracted and matched with information from
protein sequence databases using established software tools. This
workflow, including many bioinformatic tools for detailed protein
characterization, is meanwhile well established and standardized
[44].

In contrast, quantitative evaluation of MS data is comparably
less evolved, lacks generally accepted quality standards, and is
scarcely integrated into AP-MS workflows (see Table 1). The most
widely used protein quantification methods are based on either
metabolic or chemical labeling of proteins or peptides with stable
isotopes [45]. Samples to be compared are measured simultane-
ously thus eliminating variability introduced by sample processing
and run-to-run differences and facilitating data processing. How-
ever, application of isotopic labeling to AP-MS approaches has
substantial limitations: Metabolic labeling is not readily applica-
ble to all native source materials, and chemical labeling reduces
sensitivity and, like any chemical modification, increases MS back-
ground due to side reactions. Furthermore, both methods have
restrictions concerning the number of datasets that can be directly
compared: isotopic multiplexing allows up to 8 samples being mea-
sured together meaning that larger numbers of samples or data
from separate experiments cannot be compared without additional
measurements. In addition, isotope purity of labels in practice lim-
its the dynamic range of quantification to about two orders of
magnitude [46].

Because of their high sensitivity, potentially broader dynamic
range and flexibility, label-free approaches are becoming increas-
ingly popular in functional proteomics. Label-free MS quantifica-
tion is based either on counting the number of acquired MS/MS
spectra (e.g. emPAI score [47] or rPQ/PQnorm score [16]), or pep-
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tide ion intensities [48] or peak volumes (PV, calculated as the sum
of m/z signal intensities integrated over elution time assigned to
a peptide [49]). Spectral counting is not very accurate and often
fails, particularly for small proteins and large differences in protein
abundance [46,50]. In contrast, PVs are well correlated with pro-
tein abundance over a large dynamic range and largely independent
from the type of protein, sample composition or instrument setting
[51]. Therefore, PV-based quantification is the method of choice for
the evaluation of AP samples.

Two sets of quantitative information can be obtained from
peptide PVs both useful for the interpretation of AP-MS data: (i)
Abundance ratio (or relative quantification) of individual proteins
in AP(s) versus control(s), and (ii) molar abundance of any protein
within a given sample (often incorrectly referred to as ‘absolute
quantification’). The abundance ratio (rPV) of a protein is usually
calculated as mean or median of its peptides’ PV ratios in sample
versus reference. It may resolve more than 1000-fold differences
in protein abundance with reasonable accuracy [46,51], the lat-
ter being significantly enhanced by the use of appropriate (fusion)
protein standards [52]. rPVs are used to judge specific enrichment
of any co-purified protein in a target-dependent manner defining
it as a bona fide interaction partner [12,23], to compare relative
efficiency and selectivity of different antibodies in APs based on
individual target proteins, or to determine subtype preferences of
interaction partners in heteromultimeric complexes [12,23]. The
molar abundance of a protein can be roughly assessed by its three
highest peptide PVs (Top3 [53]) or by the sum of all peptide PVs
normalized to the number of amino acids accessible to MS-analysis
(abundancenorm [12,23]). It is predominantly used to discriminate
abundant and tightly associated protein partners from rare or
dynamically interacting partners [11,12,29], and to identify clus-
ters of interacting proteins by linear correlation of their abundance
profiles over multiple AP datasets [23].

Finally, PV-based quantification has also been used to deter-
mine stoichiometries of protein complexes [12,54,55]. This requires
these complexes to be purified without antibody-induced bias, con-
catenated protein standards and multiple MS-measurements.

2.6. Evaluation and controls

The proteomic approach in Fig. 2 comprises several steps, con-
trols and complementary experiments read-out either by Western
blot analysis or mass spectrometry. The resulting data may be used
first to uncover shortcomings of individual steps or protocols and to
check the quality of tools. Several considerations and macroscopic
parameters may serve as guidelines:

- As a rule of thumb, the yield of target protein recovered by the
approach should exceed 50% of the protein input from the source
tissue in order to obtain representative results. This implies that
both consecutive steps solubilization (Fig. 2, inset ‘solubilization’)
and AP should reach an efficiency of at least 75%. In the case of
protein networks the use of highly stringent conditions in addi-
tion to a more physiological reference can be advantageous to
check for the robustness of protein–protein interactions [23].

- The quality of the antibodies used for APs should be critically
investigated for specificity and selectivity. Only antibodies dis-
playing high specific enrichment of the primary target versus IgG
and knockout controls (i.e. rPV values >100) and high subtype
selectivity as confirmed by target knockout controls should be
included in the evaluation. Reliable AP datasets are character-
ized by rather low amounts of background (i.e. few background
proteins with abundancenorm values exceeding those of the tar-
get protein complex subunits), depletion of the target from the
solubilisate, and specific co-purification of validated interaction
partners (positive controls). Ideally, 2–3 high quality antibodies

are available to perform consistency filtering during final evalu-
ation as outlined below.

- The relative coverage of the primary target’ s amino acid sequence
derived from MS-retrieved peptides should be >50% [12,23,29].
This is mandatory for the identification of splice variations and
post-translational modifications [23,41], but also for identifica-
tion of lower abundant and small interaction partners [11].

In a second step, the MS data of verified AP datasets must be
evaluated. Standards for reliable protein identification (m/z toler-
ance, minimum MS/MS scores and number of identified peptides,
false-positive discovery rates (FDR)) have been well established
[44]. Likewise, quality filters for protein quantification should be
applied, including appropriate LC-retention time and m/z tolerance
windows for alignment of different MS datasets as well as total
PV intensity thresholds and the availability of at least two quan-
tifiable, specific peptide PVs per protein [11,12,23]. In addition,
specificity thresholds for rPV values of proteins may be determined
based on the actual AP/control datasets. For this purpose, histogram
plots displaying the distribution of all protein log(rPV) values have
been developed [23]. Accordingly, APs with high signal-to-noise
show a clear separation of the specifically (co)-purified proteins
from the population of background proteins, usually at rPVs higher
than 5–25 [23]. In addition to enrichment, the significance of
co-purified proteins can be corroborated by comparing their con-
sistency throughout APs with different antibodies or AP conditions.
For example, with three or more antibodies available, errors caused
by individual antibodies can be eliminated by selecting proteins
specifically retrieved with a majority of antibodies (‘consistency
criterion’ [23]). The success of these filtering steps can be checked
by the obtained list of interaction candidates: organelle contam-
inations (mitochondrial, nuclear, ribosomal proteins) as well as
common background proteins [14] should be largely absent.

As a word of caution, there remain several issues that may not
be easily resolved or even aggravated by the proteomic approach:

- The approach as shown in Fig. 2 with its multiple controls
operates on the cost of completeness. Thus, rare or highly
dynamic interaction partners such as modifying enzymes will
likely become eliminated, as well as partners with promiscuous
binding properties (for example see [23]).

- Target proteins that are stably integrated into detergent-resistant
assemblies or partners/interactions that are sensitive to deter-
gents can hardly be analyzed.

- Small proteins (<20 kDa) with unfavorable sequences, i.e. with
lack of MS-detectable tryptic peptides, will escape MS-based
identification and quantification.

- Protein abundances determined with the approach do not nec-
essarily reflect quantitative relations in the native system, as
antibodies and biochemical effects may cause biases, disruption
or rearrangements of protein assemblies during the workflow.

- The dynamic range and sensitivity of MS-analysis and the eval-
uation procedures define a technical limit for the “interactome”.
Thus, the most elaborate study so far identified somewhat more
than 200 proteins that are specifically connected to a target
(directly and indirectly), going down to about 1% of the abundance
level of the target protein [23].

3. Application of the proteomic approach

Until now, around 40 studies have been published describing
identification of new interaction partners of ion channels using pro-
teomic methods (Table 1), but only few of them meet the outlined
quality standards, such as MS quantification, stringent specificity
controls or a comprehensive AP-MS strategy. In this section, we
will discuss a few examples where specific physiological questions
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related to ion channels have been successfully answered by func-
tional proteomics. Following the definitions set forth in Section
2.1, they have been categorized in elucidation of channel cores,
identification of complex ion channel signaling entities and char-
acterization of ion-channel-associated protein networks (Fig. 1).

3.1. Subunit composition of channel cores

Ion channels are composed of principal and auxiliary subunits;
the latter influence gating, trafficking and/or subcellular localiza-
tion of the channels and are identified by diverse techniques from
genetic screens to large-scale isolation and partial protein sequenc-
ing. More recently, unbiased proteomic studies retrieved a number
of novel channel subunits, most of them previously unrelated to
ion channels or even lacking any assignment of cell physiological
function [2,11–13,28].

3.1.1. HCN channels
Hyperpolarization-activated cation channels (HCN) are

expressed as homo- and heterotetramers of four principal
subunits (HCN1–4) in excitable tissues like neurons and cardiac
muscle cells where they contribute to setting the resting mem-
brane potential and trigger rhythmic electrical activity (reviewed
in Refs. [56,57]). Hallmarks of these channels are their activation
in the negative voltage range (< −50 mV) and their modulation
by cyclic nucleotides, mainly cAMP. Binding of cAMP to the
nucleotide binding domain in the ! subunit shifts activation to
more positive potentials and thereby increases the number of
active HCN channels in the physiological voltage range [58]. This
mechanism is implicated in several functions such as "-adrenergic
regulation of heart beat rate [59,60] or transition between sleep
and wake states of the brain [61], with cAMP sensitivity showing
considerable variability in vivo (reviewed in Ref. [62]).

Since no auxiliary subunits had been described for this chan-
nel family, a functional proteomic screen was performed targeting
neuronal HCN2 channels [29]. Among the proteins robustly co-
purified under different solubilization conditions PEX5/Trip8b
was identified, a protein previously found as a HCN channel
interactor in a yeast-two-hybrid screen [63]. Importantly, mass
spectrometric quantification based on peptide PVs calibrated with
HCN-PEX5/Trip8b fusion protein standard and strong enrichment
of HCN channels in anti-PEX5/Trip8b (reverse) APs revealed that
HCN subunits and PEX5/Trip8b co-purified at comparable molar
amounts and without apparent selectivity for particular HCN sub-
types. Co-migration analysis on native PAGE gels indeed suggested
that the majority of neuronal HCN channels may be associated with
PEX5/Trip8b. These prominent features of PEX/Trip8b stimulated
more detailed functional analysis revealing that association with
this subunit abolished cAMP-modulation of HCN channels in het-
erologous cells as well as in cultured neurons [29,64]. Cell-type
specific assembly with PEX5/Trip8b (and splice variants thereof)
may therefore account for differences in cAMP sensitivity observed
between different neurons and cardiac muscle cells that do not
express Trip8b.

3.1.2. AMPA-type glutamate receptors
AMPA-type glutamate receptors (AMPARs) are ligand-gated ion

channels that are responsible for most of the fast excitatory neuro-
transmission in the CNS. They are formed by tetrameric assemblies
of ! subunits (GluA1–4, reviewed in Refs. [65–67]) whose large
extracellular domains are structurally arranged as crossing pairs
of dimers [68]. Characterization of the stargazer mutant led to
identification of a family of small transmembrane proteins termed
TARPs (for transmembrane AMPAR regulating proteins) as auxil-
iary subunits [69,70] that are structurally related to the $1 subunit
of voltage-activated Ca2+ (Cav) channels found in skeletal muscle

[71]. Interaction with these proteins has been shown to enhance
membrane trafficking of AMPARs, to slow their deactivation and
desensitization behavior, and to alter their pharmacological prop-
erties [72].

AMPARs solubilized from brain display remarkable homogene-
ity in molecular size (700–900 kDa) on native PAGE separations
indicating that these receptor channels may co-assemble with only
a limited number of partner proteins. The latter, however, cannot
be recruited from the TARP family of proteins alone as gel shift
assays using TARP-specific antibodies demonstrated that the TARPs
are only associated with a subpopulation of native AMPARs [11].
Subsequent functional proteomic analyses indeed identified pro-
teins with previously unknown function as novel auxiliary AMPAR
subunits. In a first study cornichons 2 and 3 were discovered as
highly abundant components of native AMPAR complexes [11].
These small transmembrane proteins belong to a family of proteins
homologous to the cornichon gene product originally identified
in Drosophila where it serves as a cargo transporter for certain
secreted growth factors [73,74]. In-depth quantitative MS-analysis
including comparison with fusion protein standards and native
gel shift assays confirmed that cornichons 2 and 3 are specifically
associated with the major portion of solubilized AMPARs in the
mammalian brain. In heterologous co-expression experiments, cor-
nichons markedly slowed deactivation and desensitization kinetics
of AMPARs, and enhanced their trafficking to the plasma membrane
similar to what has been observed with the TARP proteins [72].
In an independent proteomic screen, von Engelhardt and cowork-
ers identified CKAMP44 as another protein specifically co-purifying
with native AMPARs. This transmembrane protein is expressed at
low levels in brain, but localizes specifically to synapses. When
associated with AMPARs, it selectively enhanced their desensiti-
zation and slowed recovery from the desensitized state, thereby
affecting short term plasticity of excitatory synapses [28].

3.2. Assembly of signaling entities

Functional measurements in native systems have revealed
numerous examples for highly specific and rapid signaling
processes at membranes which suggested that the involved
ion channels and modulating proteins such as G-protein cou-
pled receptors (GPCRs) or effector channels may assemble into
larger functional units [75]. Such assemblies or defined spatial
arrangements may be realized through specific direct or indirect
protein–protein interactions.

3.2.1. BKCa–Cav channel–channel complexes
Large conductance, calcium- and voltage-activated potassium

channels (BKCa) are tetrameric assemblies of ! subunits (BK!)
whose hallmark feature is the name-giving dual activation by
membrane depolarization and increase in intracellular Ca2+ con-
centration ([Ca2+]i). This characteristic activation of BKCa channels
forms the basis of their general physiological function, that is
translating a mostly local increase in [Ca2+]i into rapid membrane
hyperpolarization (reviewed in Refs. [76–78]). The channels’ sen-
sitivity to Ca2+ as well as the kinetics of channel activation are
fine-tuned by auxiliary " subunits (BK"1–4, reviewed by [76]).

BKCa channels in central neurons are primarily fueled by Ca2+

ions provided through Cav channels [79–82]. To be robustly acti-
vated under physiological conditions, i.e. at membrane potentials
around 0 mV, [Ca2+]i must be ≥10 %M [16]. As such levels of [Ca2+]i
are restricted to the immediate vicinity of active Ca2+ sources
[83,84] this implies stable and close co-localization of BKCa and
Cav channels. The biochemical basis of the coupling between BKCa
channels and specific calcium sources has recently been resolved
by application of functional proteomics [16]. Careful adjustment
of solubilization conditions in combination with selection of
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suitable antibodies for APs allowed isolation of high-molecular
weight BKCa-associated supercomplexes. These contained a set of
specifically associated Cav channels as identified by quantitative
high-resolution mass spectrometry. Accordingly, Cav1.2 (L-type
channels), Cav2.1 (P/Q-type channels) and Cav2.2 (N-type chan-
nels) together with their auxiliary beta subunits (Cav " 1–3), but
not the highly homologous Cav2.3 (R-type channels), were found
to tightly associate with BKCa channel complexes consisting of
BK! and BK"2 or BK"4 subunits. Reverse purification of these
Cav channel subtypes, control experiments using BK! knockout
brains and co-purifications from heterologous expression systems
confirmed the formation of specific BKCa–Cav channel–channel
supercomplexes, most likely through direct interaction of their !
subunits. Functional coupling of both types of channel was finally
confirmed by electrophysiological experiments using different
calcium chelators on BKCa–Cav supercomplexes reconstituted
by heterologous co-expression of their respective subunits [16].
Thus, functional proteomics not only resolved a long-standing
mystery in physiology but also delivered an explanation for the
distinct biophysical properties of Cav–BKCa signaling observed in
different types of neurons (reviewed in Ref. [76]) that actually
result from the differences in kinetics and voltage-dependence of
the associated Cav channels [85].

3.2.2. GABAB–KCTD complexes
GABAB receptors belong to the class III of GPCRs and are

activated by $-aminobutyric acid (GABA), the main inhibitory neu-
rotransmitter in the mammalian brain. Two different subunits,
GABAB1 (coming in two splice variations GABAB1a and GABAB1b)
and GABAB2 have to co-assemble to form functional GABAB(1a,2)
and GABAB(1b,2) receptors (reviewed in Ref. [86]). These receptors
are expressed in virtually all neurons in the brain and influence
synaptic transmission and signal propagation by regulating the
activity of Cav and inward-rectifier K+ (Kir) channels via the "$
dimer of the activated G-protein [86–89]. This functional coupling
is restricted to closely co-localized GABAB receptors and Kir3/Cav
channels [90,91], suggesting existence of signaling complexes or
interactions with additional linker proteins.

Thus, a functional proteomic approach was applied to native
GABAB receptors that used validated solubilization buffers, mul-
tiple APs (each controlled by the respective target knockout) and
quantitative mass spectrometry [12]. In addition to (expected) G-
protein subunits, four previously uncharacterized members of the
‘potassium channel tetramerization domain-containing’ (KCTD8,
12, 12b and 16) family of proteins were found to specifically
co-purify with the receptor. Their consistent and highly abun-
dant co-purification with GABAB1 and GABAB2 protein, efficient
co-purification of GABAB subunits in reverse APs with anti-KCTD
antibodies and co-migration of the KCTD proteins with GABAB het-
eromers in native gel separations qualified them as constitutive
and specific subunits of native GABAB receptors. Furthermore, bio-
chemical analysis combined with advanced mass-spectrometric
quantification of reconstituted complexes formed from GABAB2 and
KCTD12 domains revealed the quaternary structure of this assem-
bly: one GABAB2 subunit associates with one tetramer of KCTDs.
Accordingly, the minimum size of native GABAB receptors observed
in native PAGE gels is consistent with a stoichiometry of dimers
of heterodimeric GABAB(1,2) assembled with two KCTD tetramers.
Electrophysiological measurements of GABAB receptor-mediated
Kir3 channel activation or Cav2 channel inhibition demonstrated
that receptor-associated KCTD proteins influence the G-protein
signaling of the GABAB receptor by increasing agonist sensitivity,
accelerating the onset of the receptor response and determining
kinetics and extent of desensitization in a subtype-specific manner
[12]. Association of the GABAB core subunits with the four KCTD
proteins as auxiliary subunits expands the functional repertoire of

native GABAB receptors and may help elucidate the mechanism(s)
responsible for selective coupling of GABAB receptors to effector
ion channels.

3.2.3. Kv1 channel complexes
Kv1 channels, the first potassium-selective ion channels to

be cloned and thoroughly characterized biochemically, primar-
ily assemble as heterotetramers of Kv1 ! subunits (Kv1.1–7)
and auxiliary " subunits (Kv"1–3) (reviewed in Ref. [92,93]).
Upon membrane depolarization most Kv1 channels elicit non-
inactivating K+ currents, unless Kv1.4 or Kv"1 subunits are
incorporated into the channels. The latter present with particular
N-terminal domains that endow the channels with rapid inactiva-
tion thus giving rise to the well-known A-type currents [94,95].
Accordingly, depending on their subunit composition, Kv1 chan-
nels repolarize and shape the action potential in CNS neurons and
thereby influence firing pattern and modulate neurotransmitter
release [96–99].

An initial proteomic screen based on large-scale APs of Kv1
channels from rat brain and mass spectrometric analysis of specific
protein bands identified a number of known interaction part-
ners (including various Kv1!, Kv", several MAGUKs, neurexin,
Caspr2) as well as the functionally uncharacterized protein LGI1
(leucine-rich glioma inactivated gene 1 [100–102]) and the trans-
membrane catalytically inactive metalloproteinases ADAM22 and
23 [103]. Functional characterization of reconstituted presynaptic
Kv1 channels (Kv1.1/Kv1.4/Kv"1 + LGI1) showed that LGI1 selec-
tively disrupted rapid Kv"1-mediated channel inactivation. This
effect was not observed with LGI1 mutants found in patients suf-
fering from autosomal dominant lateral temporal lobe epilepsy,
providing an explanation for development and inheritance mode
of this LGI1-caused disease [103,104]. Subsequent proteomic stud-
ies found that LGI1 forms stable complexes with ADAM22 and
23 [105,106] and confirmed that a subpopulation of LGI1 asso-
ciates with Kv1 channels [104,107–109]. Although it is likely that
LGI1-ADAM22/23 complexes have additional functions indepen-
dent from modulation of Kv1 channels, it is noteworthy that both
complexes were also co-purified as part of Cav2-associated (mainly
presynaptic) protein networks (see Section 3.3).

3.3. Channel-associated protein networks: Cav2 channels

Distinct from the aforementioned examples, the proteomic
approach in its extended form (Fig. 2) can be used to achieve com-
prehensive insight into composition and organization of protein
networks (Fig. 1).

This may be best illustrated with the subfamily 2 of Cav chan-
nels (Cav2.1–Cav2.3 [110]) that are key players in CNS synapses
where they initiate a multitude of processes including neurotrans-
mitter release, regulation of excitability, excitation-transcription
coupling, synaptic plasticity or axonal growth [111–114]. Most of
these processes require free Ca2+ ions in micromolar concentrations
and are, therefore, expected to reside in the immediate vicinity of
the Cav channels, often termed nano-environments (reviewed in
Refs. [83,84]). In line with such assumption, APs with individual
antibodies targeting the principal !1 and auxiliary " subunits of the
Cav2 channels co-purified quite a number of proteins at similarly
high yields as the Cav channels [23] and thus imposed all the severe
challenges on the proteomic approach described in Section 2.

Consequently, proteomic analysis of the Cav2 nano-
environments required the complete set of controls discussed
above, including solubilization conditions of different stringency,
multiple antibodies to distinct epitopes on the Cav2 target proteins,
target knock out material and IgG controls, as well as specificity
thresholds and consistency of candidate interactors among the
individual APs (Fig. 2, inset ‘quantitative evaluation’). As a result,
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evaluation of the 64 APs analyzed by 129 nano-LC MS/MS runs (that
identified an average of 240 proteins per AP with an average 1970
PVs assigned per AP) provided a wealth set of information on the
composition and operation of the molecular nano-environments
of the Cav2 channels in the whole mammalian brain. In particular,
the following issues and novel insights were set forth by the
proteomic approach [23]:

Composition of the channel core: Cav2 channels were found to be
made up from !1 and " subunits (Cav"1–4) that were both co-
purified at equimolar ratios independent of the antibody or the
solubilization condition. In contrast, two other types of supposed
auxiliary subunits [115] were either retrieved at low amounts or
failed verification by the proteomic approach. Accordingly, the
!2# proteins, recovered at 0.1–1% of the amounts obtained for !1
and " subunits, must be regarded as either less-stably associated
subunits or interactors of a subpopulation of Cav2 channels readily
solubilized by digitonin [116,117]. The Cav $ proteins $2–8 are no
subunits of Cav2 channels, but were rather identified as auxiliary
subunits of the AMPA-type glutamate receptors [11].
Identification and characterization of the nano-environment con-
stituents: In addition to the core-subunits, proteomic analysis
identified ∼200 proteins that were all co-purified with the Cav2
channels both specifically and consistently as indicated by abun-
dance ratios with knock out controls and the use of 14 different
anti-Cav antibodies (see Section 2.6). Quantitative analysis of the
protein amounts using PV-based abundancenorm values (see Sec-
tion 2.5) showed that these robustly purified proteins covered
an abundance range of about three orders of magnitude with
respect to the channel core as a reference. Moreover, the iden-
tified proteins exhibited distinct preference for the three Cav2
channel subtypes: one third was uniquely found with one sub-
type, while two thirds were either shared between two subtypes
or were co-assembled with all, Cav2.1–Cav2.3. The largest over-
lap in ‘common protein pools’ was seen with Cav2.1 and Cav2.2,
reflecting the shared role of both P/Q- and N-type channels in the
presynaptic release of transmitters [118].
The number of proteins identified by this comprehensive approach
as constituents of the Cav2 nano-environments exceeded by far
the number of interactors previously described as partners of
Cav2 channels. Notwithstanding, all of these established interac-
tors are represented in the Cav2 proteome at appreciable amounts
[119–123]. Quite a number of the other constituents have been
implicated in Ca2+-dependent signaling, but have not been struc-
turally linked to the Cav2 channels or their nano-environments.
It should be further added, that besides individual interactors the
approach also captured en-bloc a number of previously identified
‘signaling entities’ (see Section 3.2) including the BKCa–Cav com-
plexes [16], the GABAB receptor together with the KCTD tetramers
[12] or the Kv1-associated protein assemblies [103,124,125].
Organization of the Cav2 nano-environments as networks: The quan-
titative data on protein amounts obtained from the series of
anti-Cav APs under different solubilization conditions enabled
correlation analyses that can be used to detect direct and more
complex protein-protein interactions within the identified pool
of nano-environment constituents [126]. In fact, such analyses
revealed quite a number of connections between individual con-
stituents of the Cav2 nano-environments and identified a series of
sub-clusters therein. Together with database entries on protein
interactions (mostly based on one-to-one interactions of pro-
teins or protein domains) this correlation analysis provided the
first insights into the organization of Cav2 nano-environments as
extended and modular protein networks.
Operation of Cav2 nano-environments: In addition to the more
structural/biochemical insights into the Cav2 networks discussed
above, the results of the proteomic approach also provided a

wealth set of data on their operation. Thus, the primary (biochem-
ical) function of the identified constituents, their established role
in cell physiology and their localization within less than a few
10 nm from the Cav2 channels promote a picture where the Cav2
networks function as ‘integrative units’ or ‘signaling platforms’
[23,111]. These units are activated by membrane depolarization
as an external input which, via opening of the Cav channels, leads
to an increase in [Ca2+]i. This Ca2+ signal is subsequently inte-
grated by positive and/or negative feedback loops that involve
a number of nano-environment constituents (including GPCRs,
enzymes, channels and transporters). The resulting [Ca2+]i finally
determines the output of the unit by controlling the activity
of ‘Ca2+-dependent effector systems’ (including BKCa channels,
protein kinase C, CaM-kinase II, nitric oxide synthetase or the
machineries of vesicle processing and fusion).

Thus, the proteome of the Cav2 nano-environments reflects the
cellular processes that can be initiated by Cav2 channel activity and
defines the molecular framework for organization and operation
of local Ca2+-signaling by these channels. In addition, it offers a
roadmap for detailed investigations of the local Ca2+-signaling in
the CNS.

4. Conclusions

The concept of ion channels being embedded into molecu-
lar environments has been discussed for quite a while and many
efforts have been made to get access to the underlying proteins and
protein–protein interactions. High-quality functional proteomics
as discussed here now appears able to finally fill this gap and
provides comprehensive information on these environments –
unbiased and free of any hypotheses. In particular, the proteomic
approach is able to unravel the subunit composition of channels
and their periphery beyond the borders of known, hypothesized
and/or functionally assigned proteins, to discriminate proteins as
true complex subunits from more dynamic or indirect interac-
tion partners, and to give insight into the functional properties
of the resulting channel-mediated signaling. All these informa-
tion certainly go far beyond a pure ‘list-like’ annotation of proteins
retrieved by individual APs, but rather set new impulses for further
investigations of ion channel function in the areas of molecular as
well as cellular research.
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