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Upon B-cell activation, the signaling subunits Ig-α and Ig-β of the
B-cell antigen receptor become phosphorylated not only on tyro-
sines but also on serine residues. Using a specific antibody, we
show that serine 197 (S197) in the cytoplasmic tail of Ig-α is phos-
phorylated upon B-cell antigen receptor activation, and that this
modification inhibits the signal output of the B-cell antigen recep-
tor. Surprisingly, we found that the well-known protein tyrosine
kinase Syk (spleen tyrosine kinase) phosphorylates S197 on Ig-α,
thus not only activating but also inhibiting signaling from the B-cell
antigen receptor. This finding identifies Syk as a dual-specificity
kinase and establishes a previously unexplored paradigm for the
self-regulation of biological signaling processes.

The B-cell antigen receptor (BCR) comprises the membrane-
bound Ig molecule and the Ig-α/Ig-β heterodimer, which

function as the ligand-binding and signaling subunits, re-
spectively. The cytoplasmic tails of Ig-α and Ig-β contain an
immunoreceptor tyrosine-based activation motif (ITAM) (1, 2).
Upon BCR activation, protein tyrosine kinases (PTK), such as
the spleen tyrosine kinase (Syk) and the Src family kinase Lyn,
become active and phosphorylate the ITAM tyrosines of Ig-α
and Ig-β (3–5). Syk is a cytoplasmic PTK that carries two tandem
N-terminal Src homology 2 (SH2) domains (6, 7). The phos-
phorylation of the two ITAM tyrosines of Ig-α or Ig-β creates
docking sites for the tandem SH2 domains of Syk (8–10). This
process allows Syk to bind to the BCR and to phosphorylate
neighboring ITAM tyrosines, thus amplifying the signaling out-
put of the BCR (11).
Syk not only phosphorylates the ITAMsequences of Ig-α and Ig-

β, but also tyrosines on several other substrate proteins controlling
signaling pathways downstream of the BCR. For example, by
phosphorylating the coreceptor CD19 and the adaptor protein
BCAP, Syk activates the phosphoinositide-3-kinase (PI3K) path-
way that controls proliferation and survival of B cells (12–14).
Another well-known substrate of Syk is the adaptor protein SH2
domain-containing leukocyte protein of 65 kDa (SLP-65) (also
known as BLNK or BASH) (15–17). Upon phosphorylation of
SLP-65 on several tyrosines, this adaptor protein organizes a sig-
nalosome that promotes Ca2+ response and the differentiation of
developing B cells (18, 19). Signal transduction from the BCR also
results in the activation of the ERK pathway, which can support
both the proliferation and the differentiation of B cells (20).
Tyrosine phosphorylation is not the only posttranslational

protein modification observed in activated B cells. In addition,
many serine/threonine kinases (STK) are activated and can
phosphorylate amultitudeof protein substrates.Dependingon the
substrate, phosphorylation on serine/threonine (S/T) residues can
have positive or negative effects on signal transduction (21–26).
The cytoplasmic sequence of Ig-α and Ig-β not only contains

tyrosines but also S/T residues and it has been shown that some
of the latter residues are phosphorylated in activated B cells (27,
28). Specifically, the Ig-α tail carries two serines that flank the
second ITAM tyrosine Y193 and one threonine adjacent to the
non-ITAM tyrosine Y204. We have previously mutated the
serine and threonine residues of Ig-α and found an increase in
tyrosine phosphorylation of the mutant Ig-α, suggesting that S/T

phosphorylation inhibits the activation signals of the BCR (29).
Here, we identify the inhibitory residue of Ig-α as S197 and show
that this serine is indeed phosphorylated in activated B cells.
Moreover, we found that Syk phosphorylates S197. This uniquely
characterizes Syk as a dual-specificity kinase with opposing sig-
naling functions on the BCR.

Results
Serine 197 Phosphorylation of Ig-α Inhibits BCR Signals. The cyto-
plasmic tail of Ig-α not only contains tyrosines but also two
serines and one threonine as potential targets of phosphorylation
(Fig. 1A). To investigate the function of these residues, we
generated a mutant form of Ig-α (Ig-αAAV) in which the two
serines and the threonine were substituted with alanine and va-
line, respectively (Fig. 1A). In addition to this triple mutant, we
also generated a single point-mutant of Ig-α carrying an alanine
instead of a serine at position 197 (Ig-αA) (Fig. 1A). Retroviral
vectors expressing WT or mutant forms of Ig-α were introduced
into ex vivo-cultured pro-B cells derived from bone marrow of
mb-1−/− /B1-8-knock-in mice (30, 31). Because of the deletion of
the mb-1 gene, these cells do not produce Ig-α and express the
μm heavy chain of the B1-8 antibody from a VHDJH knock-in
allele. Reconstitution of these pro-B cells with retroviral vectors
coding for the λ light chain and a flag-tagged Ig-α results in the
expression of a BCR that can specifically recognize the hapten
4-hydroxy-5-iodo-3-nitrophenyl-acetyl (NIP) (32, 33).
A flow cytometric analysis showed that cells expressing either

WT or mutant Ig-α have similar amounts of the BCR on their
surface (Fig. S1). The strength of BCR signaling can be moni-
tored by the increase of the intracellular Ca2+ concentration in
activated B cells (34). All Ig-α transfectants showed a Ca2+ influx
upon stimulation of their BCR with either 1 (Fig. 1B) or 10 ng/mL
(Fig. 1C) of NIP-BSA, whereas the BCR-negative recipient pro-B
cells (control) do not respond to the stimulus (Fig. 1B). However,
in comparison with B cells expressing Ig-αWT, those expressing
the mutant forms of Ig-α had an increased Ca2+ response, sug-
gesting that the mutant BCRs can transmit a stronger signal into
the cytosol than the WT BCR. This conclusion was confirmed by
a Western blot analysis that monitored the activation of the BCR
proximal kinase Syk by a phospho-specific antibody detecting the
autophosphorylation of Syk at Y630 (35). Antigen-stimulated B
cells expressing the Ig-αAAV or Ig-αA mutants show a stronger
and prolonged Syk phosphorylation than those expressing WT Ig-
α (Fig. 1D). Furthermore, upon activation, B cells containing
these Ig-α mutants have higher and more prolonged PKB/AKT
phosphorylation (pS473) than cells carrying WT Ig-α (Fig. 1E).
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Because in these assays the BCR with an Ig-αA point mutation
behaves similarly to the Ig-αAAV triple mutant, we focused our
further analysis on the single mutant BCR. In a time-course
experiment, we found that the total tyrosine phosphorylation
response was always higher in the Ig-αA mutant than in Ig-αWT
expressing B cells (Fig. 2A). Furthermore, upon antigen stimu-
lation, the ERK phosphorylation was also stronger in the Ig-αA
than in the Ig-αWT-expressing B cells (Fig. 2B). These data show
that several signaling routes from the BCR are affected by the Ig-
αA mutation, including the PI3K and the MAP kinase pathways
(Figs. 1E and 2B).
To establish that Ig-α S197 is indeed phosphorylated, we

generated a phospho-serine (pS197)-specific antibody. In a dot-
blot assay, this antiserum only recognized the pS197 peptide but
not the pY containing peptide (Fig. S2 A and B). To prove that
the pS197-Ig-α antibody recognizes Ig-α only when S197 is
phosphorylated, the pS197 peptide was or was not treated with
alkaline phosphatase and analyzed by Western blot. The alkaline
phosphatase-treated peptide was no longer recognized by the
anti-pS197-Ig-α antibody, thus confirming the specificity of this
antibody (Fig. S2C).
The anti-pS197 antiserum allowed us to monitor the kinetics

of Ig-α S197 phosphorylation in activated B cells. In a Western
blot analysis of NIP-BSA stimulated B cells, the phosphorylation
of S197 is detected at 5 min, and decreased after 20 min of B-cell
activation (Fig. 2C). No serine phosphorylation of Ig-α was
detected in the total lysate of Ig-αA (S197A) and Ig-αD (S197D)
mutants expressing B cells, again demonstrating the specificity of
the anti-pS197 antibody (Fig. 2C).

Serine 197 of Ig-α Is Phosphorylated by Syk. The S2 Drosophila
system allows to rebuild the BCR receptor complex and to study
its interaction with signal transducing kinases (11, 36). In an
attempt to find the kinase phosphorylating S197 of Ig-α, we co-
expressed the BCR together with several STKs that are activated
during BCR signaling, including PKCα, PKCδ, and PKB (Fig.
S3). In this assay, none of these kinases phosphorylated the S197
residue either of Ig-αWT or of an Ig-αDD mutant, where the two
ITAM tyrosines were replaced with negatively charged aspartic
acids (D) residues (Fig. S3A). This Ig-αDD mutant was included
in the S2 cell assay because it could mimic ITAM-phosphorylated
Ig-α. The activity of these STKs was confirmed using the corre-
sponding phospho-specific antibodies (Fig. S3A, third and fourth
panels, lanes 3–8). As a control, we also tested the BCR-proximal
PTK Syk in the S2 cell assay. Surprisingly, we found that coex-

pression of the BCR with Syk results not only in tyrosine but also
in S197 phosphorylation (Fig. 3A and Fig. S3A). When the BCR
was expressed alone, none of these residues were phosphorylated
(Fig. 3A, lane 1). The mutant BCR containing Ig-αA was phos-
phorylated by Syk on tyrosines but no longer on S197 (Fig. 3A,
lane 4). In this S2 assay, we also coexpressed SLP-65 because the
phosphorylation of this adaptor protein is a reliable read-out for
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Syk activity (11). The coexpression of the BCR with a kinase dead
mutant of Syk (SykKD) did not result in tyrosine or S197 phos-
phorylation of Ig-α (Fig. 3B, lanes 5 and 6). Thus, in the S2 system,
the kinase activity of Syk is required for both the phosphorylation
of ITAM tyrosines and of S197 of Ig-α.
To test whether or not the two ITAM tyrosines (Y182 and

Y193) play a role in the process leading to S197 phosphorylation,
we substituted these tyrosines with either phenylalanine (Ig-αFF)
or aspartic acid (Ig-αDD). Clearly, S197 is no longer phosphory-
lated in a BCR carrying the Ig-αFF mutant, whereas a BCR with
the Ig-αDD mutant still displays S197 phosphorylation (Fig. 3C,
second panel, lanes 5 and 6). Thus, either the phosphorylation of
the ITAM tyrosines or its replacement with negatively charged
amino acids allow S197 phosphorylation. In S2 cells expressing
BCR with Ig-α ITAM mutants, Syk is still activated as indicated by

the strong SLP-65 phosphorylation (Fig. 3C, Upper, lanes 4–6).
This was because of the presence of Ig-β carrying its own ITAM.

Syk as a Dual-Specificity Kinase. From the S2 experiments, it is not
clear whether Syk is directly mediating or only indirectly influ-
encing S197 phosphorylation. For example, it is possible that Syk
helps to recruit a STK to the BCR by phosphorylating the ITAM
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tyrosines. To prove that Syk can directly phosphorylate S197, we
performed an in vitro kinase assay where we incubated a purified
GST-Syk fusion protein together with either GST, GST-Ig-αWT,
or GST-Ig-αA (Fig. 4A). The phosphorylation state of the GST-
Ig-α proteins was then analyzed by Western blotting using
anti-pY (4G10) and anti-pS197 antibodies. In this assay, Syk
phosphorylates the tyrosines and the S197 of the GST-Ig-αWT
protein (Fig. 4A, lane 5) but only phosphorylates the tyrosines in
the GST-Ig-αA mutant (Fig. 4A, lane 6). To demonstrate that
additional kinases are not typically copurified with the GST-
containing proteins produced in insect cells, another recombi-
nant tyrosine kinase (GST-Lck) was examined for its ability to
phosphorylate Ig-α. In an in vitro kinase assay, GST-Lck was only
able to phosphorylate tyrosines of Ig-α (Fig. 4B, lane 5). Taken
together, these results reveal that Syk is a dual-specificity kinase
that not only phosphorylates tyrosine but also serine residues.

Syk Regulates Ig-α Serine Phosphorylation in Primary B Cells. To
investigate Ig-α S197 phosphorylation in primary B cells, we
stimulated splenic B cells with an anti-IgM antibody in the
presence of the serine phosphatase inhibitor calyculin (c) (Fig.
5A). In these activated B cells, the Ig-α tyrosine phosphorylation
has a faster kinetics than the S197 phosphorylation, suggesting
that the later process relies on the former one (Fig. 5A, first and
second panels).
To prove that Syk is the kinase involved in the Ig-α S197

phosphorylation in vivo, activated splenic B cells were pretreated
with the Syk inhibitor piceatannol. Although the overall tyrosine
phosphorylation was not grossly affected by the addition of the
Syk inhibitor (Fig. 5B, Upper), piceatannol treatment decreased
both the Ig-α S197 phosphorylation and the phosphorylation of
Y630 in the C-terminal tail of Syk (Fig. 5B, second and third
panels). Inhibition of Syk activity results in a reduction of Ig-α
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S197 phosphorylation, suggesting that Syk is also involved in this
phosphorylation event in vivo.

A Syk Mutant with Increased Serine Phosphorylation Activity. To
learn more about the molecular requirements for the serine
phosphorylation activity of the dual-specificity kinase Syk, we
compared the structure and the amino acid sequence of the
substrate-binding loop of the PTKs Syk and ZAP-70 with that of
the STKs B-Raf and PKC (Fig. 6A). The overall fold of this loop
is quite similar between the two types of kinases. For example,
they both have a bend at the C terminus of the substrate-binding
loop that contains the highly conserved sequence alanine, pro-
line, glutamic acid (APE). The conserved APE motif allows the
alignment of different kinase sequences and reveals that the
N-terminal region adjacent to the APE sequence is quite differ-
ent between PTKs and STKs (Fig. 6A, Lower). For example,
directly adjacent to the APE sequence, B-Raf and PKC both carry
a nonaromatic amino acid (methionine and serine, respectively),
whereas Syk and ZAP-70 contain a tyrosine (Y539 and Y505,
respectively) at this position (Fig. 6A, Upper). To test whether the
amino acid at this position influences the kinase activity, we
substituted Y539 of Syk with alanine (SykY/A) (Fig. 6A). When
tested in the S2 reconstitution system, the SykWT and SykY/A
mutant proteins both phosphorylate the tyrosines of the CD8-Ig-α
tail to a similar extent (Fig. 6B, Upper, lanes 2 and 3). However,
phosphorylation of the S197 was clearly increased by the SykY/A
mutant when compared with the SykWT protein (Fig. 6B, sec-
ond panel, lanes 3 and 2). The increased ability of the SykY/A
mutant to phosphorylate Ig-α S197 was also confirmed in an in
vitro kinase assay (Fig. 6C, second panel). In this assay, the con-
trols consisting of the catalytic dead versions of Syk and SykY/A
resulted in no phosphorylation of GST-Ig-α (Fig. 6C, lanes 3
and 5). Furthermore, substitutions of Y539 with other amino acids
such as threonine or methionine also increased the serine kinase
activity of Syk (Fig. S4 A and B). We also mutated other amino
acids of the substrate-binding loop but these mutations frequently
resulted in either no alterations or in the loss of both the tyrosine
and serine phosphorylation activity of Syk (Fig. S4 A and C). The
finding that a point mutation in Syk resulted in an increased Ig-α
serine phosphorylation is another indication that Syk is indeed
a dual-specificity kinase.
We next asked whether the increased serine phosphorylation

activity of the SykY/A mutant alters B-cell signaling. For this, we
transduced Syk deficient pre-B cells with vectors coding either
for SykWT or for the SykY/A mutant. Transfectants expressing
similar amounts of Syk in the cytosol (Fig. 6D) and of pre-BCR
on the surface (Fig. S5A) were stimulated and the total cellular
lysates were analyzed for tyrosine and serine phosphorylation by
Western blot (Fig. 6E). In comparison with pre-B cells express-
ing SykWT, cells expressing the SykY/A mutant responded to the
pre-BCR stimulation with slightly reduced tyrosine phosphory-
lation, but increased Ig-α serine phosphorylation (Fig. 6E, first
and second panels). Even more remarkable was the finding that
the SykY/A-expressing pre-B cells displayed a reduced intracel-
lular Ca2+ release in comparison with SykWT-expressing pre-B
cells (Fig. 6F, blue line and black line). Conversely, Syk-deficient
pre-B cells expressing a kinase dead version of Syk (SykKD)
showed impaired Ca2+ influx upon activation, demonstrating the
requirement of the Syk activity for pre-B cell response (Fig. S5B).
These results once more show that the serine phosphorylation of
Ig-α is controlled by the kinase Syk and that S197 phosphorylation
negatively regulates BCR signaling.

SykY/A Mutant Has Impaired B-Cell Development. To examine
weather the altered kinase activity of SykY/A has some influence
on B-cell differentiation in vivo, we reconstituted Syk deficient
pre-B cells with vectors coding either for GFP (control), SykWT-
IRES-GFP, or for SykY/A-IRES-GFP. Pre-B cells were then

sorted for GFP expression and i.v. transferred into RAG-2−/−/
γc−/− mice. The generation of B cells was assessed 9 d after in-
jection. IgM+ B cells (9%) expressing SykWT were found in the
spleen, whereas cells expressing SykY/A had an almost complete
block in B-cell differentiation similar to that seen in the control
(Fig. 7A). A similar result was obtained in the bone marrow
(BM), where cells expressing SykWT differentiated into IgM+ B
cells, whereas cells carrying the mutant SykY/A did not develop
further (Fig. 7B). In comparison with SykWT cells, a higher
amount of SykY/A expressing cells was found in the spleen (Fig.
7C, Left) whereas a comparable number of GFP+CD19+ cells
expressing either GFP (control), SykWT, or SykY/A was present
in the BM (Fig. 7C, Right). This finding indicates that enhancing
the Syk serine kinase activity dramatically impairs B-cell de-
velopment. Furthermore, in contrast to B-cell differentiation, the
elevated number of GFP+CD19+ SykY/A cells found in the
spleen suggests that pre-B cells expressing mutant Syk could
have an enhanced ability to either proliferate or survive.

Discussion
We have shown here that Syk is a dual-specificity kinase with
opposing signaling activities on the BCR. As a PTK, it initiates
and amplifies signal transduction from the BCR. As a serine
kinase, it inhibits and limits signaling output from this receptor.
In activated B cells, Syk not only phosphorylates the BCR

signaling subunit Ig-α but also several other protein substrates
including CD19 and SLP-65 (13, 14). At present, it is not clear
whether the negative regulatory influence of the serine kinase
activity of Syk is only because of S197 phosphorylation or also
because of the S/T phosphorylation of other Syk substrates.
However, our analysis of the Ig-αA mutant suggests that pS197
plays a major role in the negative regulation of BCR signal
transduction. In this respect, our results show that blocking S197
phosphorylation increases, whereas augmenting S197 phos-
phorylation (via the SykY/A mutation) inhibits the signaling
output of the BCR. Furthermore, the balance between tyrosine
and serine kinase activity of Syk appears to regulate B-cell dif-
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Fig. 7. B-cell development defect of pre-B cells expressing SykY/A. Syk KO
pre-B cells transduced with either control vector (GFP), SykWT, or SykY/A
were injected i.v. into RAG-2−/−/γc−/−mice. Nine days after injection, cells from
spleen (A) and BM (B) were analyzed by flow cytometry. (A) B cells are shown
in the dot plots with anti-CD19 and anti-IgM antibodies. The cells were gated
on the GFP+ population. The number represents the percentage of
CD19+IgM+ cells. (B) The histogram shows IgM expression of the GFP+CD19+

gated cells. (C) Histograms indicate the number of the GFP+CD19+ cells found
in the spleen (Left) and in the BM (Right). Error bars show the means + SEM
(each with five mice; *, P < 0.01). The cell injection was done two times using
three mice per group per experiment. In these two experiments, the cells
were independently infected and sorted for GFP expression.
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ferentiation. In vivo, pre-B cells expressing the SykY/A mutant
fail to develop into IgM+ B cells.
Syk was found to be a frequently mutated PTK in human tu-

mor samples (37). Several small inhibitors of Syk have been
generated in recent years and some of these are now being tested
in clinical trials for their role in inhibiting autoimmune or tumor
diseases (38). However, with the finding that Syk is a dual-
specificity kinase, it may now be possible to screen for more
specific drugs, which only inhibit one of the two activities of Syk.
The different time courses of tyrosines and S197 phosphor-

ylations of Ig-α suggest that the phosphorylation of the ITAM
tyrosines is crucial to allow the S197 phosphorylation. The
finding that Syk cannot phosphorylate the S197 residue of the Ig-
αFF mutant lacking the two ITAM tyrosines supports this no-
tion. Thus, the Ig-α ITAM phosphorylation seems to be a pre-
requisite for S197 phosphorylation.
The dual-specificity of Syk may have evolved to limit the ex-

tent of Syk activation at the BCR. Indeed, once Syk has formed
the first initiating Syk/BCR complex, it can rapidly phosphorylate
neighboring ITAM tyrosines, thus amplifying the BCR signal.
The parallel phosphorylation of Ig-α S197 by Syk may limit this
signal amplification. The molecular mechanisms of how S197
phosphorylation inhibits BCR signaling are not clear at present.

It is feasible that pS197 recruits negative regulatory enzymes
such as protein phosphatases, which can efficiently counteract
Syk activity at the BCR. Our finding that Syk is a dual-specificity
kinase with opposing activities at the BCR shows that the reg-
ulation of BCR signaling is more sophisticated than appreciated
by the current models.

Materials and Methods
Details on mice, cell lines, cell culture, transfection and retroviral trans-
duction, plasmids, antibodies, Dot Blot assay, in vitro kinase and phos-
phatase assays, isolation of splenic B cells, immunoprecipitation, measure-
ment of Ca2+ release and cell stimulation are provided in SI Materials
and Methods.
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