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Summary

Frizzled (Fz) is a seven-pass transmembrane receptor that
acts in both Wingless (Wg) and planar cell polarity (PCP)

pathways. A prerequisite for PCP signaling is the asym-
metric subcellular distribution of Fz [1–3]. However, the

regulation of Fz asymmetry is currently not well understood.
Here we describe that the transmembrane protein CG8444

(here termed VhaPRR) is needed for PCP signaling in
Drosophila. VhaPRR is an accessory subunit of the vacuolar

(V)-ATPase proton pump [4], but it also functions as a
receptor for (pro)renin (PRR) in mammals [5, 6]. We show

that VhaPRR function is tightly linked with Fz but not other
PCP core proteins. Fz fails to localize asymmetrically in the

absence of VhaPRR, and this is accompanied by prehair mis-

polarization of pupal wing cells. In addition, VhaPRR forms
a protein complex with Fz receptors and interacts genetically

with Fz in the Drosophila eye. VhaPRR also acts as a modu-
lator of canonical Wnt signaling in larval and adult wing

tissue. Its loss leads to an expansion of the Wg morphogen
gradient and a reduction of Wg target gene expression. The

requirement for additional V-ATPase subunits suggests that
proton fluxes contribute to normal Fz receptor function and

signaling.

Results

The planar cell polarity (PCP) pathway polarizes cells in the
plane of a tissue in a cell-autonomous and nonautonomous
manner. The pathway is best understood in Drosophila, where
it regulates a number of morphogenetic processes, such as
the precise ommatidial arrangement in the eye and the orienta-
tion of hairs and bristles of the wing and notum. Because it
shares molecular components such as Frizzled (Fz) with the
canonical Wnt pathway, it is also named the noncanonical
Wnt pathway. Both pathways are essential for numerous
developmental processes and are deregulated in many human
diseases [1, 2]. We previously reported the involvement of the
sodium-proton exchanger, Nhe2, in Fz-mediated planar
polarity signaling in Drosophila [7]. Subsequently, a genome-
wide RNA interference (RNAi) screen for notum bristle pheno-
types suggested that the knockdown of CG8444 causes bristle
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polarity defects [8]. Although CG8444 has not been function-
ally characterized in Drosophila, it has been termed VhaM8-9
because of its sequence homology with an accessory subunit
of the vacuolar proton pump, V-ATPase [4]. Like Nhe2, the
V-ATPase extrudes protons from the cytosol into organelles
and/or the extracellular space. The mammalian ortholog
functions as a receptor for renin and prorenin (PRR), and
hypomorphic PRR mutations cause mental retardation and
epilepsy in humans [9]. Our name VhaPRR reflects the
proposed dual function of the protein and the homology with
PRR (as compared with VhaPPA1, another V-ATPase subunit).

VhaPRR Is Required for Planar Cell Polarity
Confirming the finding of the bristle screen, the expression of
VhaPRR RNAi (RNAi-1) with another notum driver, apterous
(ap)-GAL4, caused severe planar polarity defects in the ante-
rior-posterior orientation of sensory bristles or microchaetae
(Figures 1B and 1E). However, we also detected abnormalities
in notum bristle morphology and number, suggesting defects
in other processes. In the wing, the knockdown of VhaPRR
with several drivers caused PCP defects in combination with
growth and vein defects. The PCP defects were strongest in
the proximal dpp or patched (ptc) expression domain between
veins L3 and L4. Here VhaPRR knockdown caused multiple
wing hair and hair mispolarization phenotypes (Figure 1G;
Figures 2A, 2B, and 2D; see also Figure S4B’ available online).
As visualized by GFP coexpression in the pupal stage, defects
in prehair polarity were confined to the dpp and ptc expression
domain, suggesting cell-autonomous PCP defects (Fig-
ure S4B’; data not shown). In addition to the loss-of-function
analysis, we overexpressed VhaPRR in the wing. The overex-
pression in the dpp stripe caused swirls and multiple wing
hairs in the proximal part of the wing (Figure 1H). Interestingly,
engrailed (en)-GAL4-mediated VhaPRR overexpression also
led to hairs pointing toward the wild-type anterior domain
that also can be seen when Fz is overexpressed (Figures 1I
and 1J) [10, 11]. However, similar to the knockdown, the mis-
polarization seemed to be confined to the expression domain.

To exclude off-target effects that may be associated with
RNAi knockdown, we used an additional RNAi line (termed
RNAi-2). The RNAi sequences are nonoverlapping, and their
expression generally caused comparable phenotypes. Exper-
iments were performed with both RNAi lines, as indicated in
the figures. We also detected a partial rescue of the wing
phenotype caused by nubbin-GAL4-mediated VhaPRR knock-
down when coexpressing the human ortholog PRR-EGFP
(26% identity with VhaPRR/dPRR), but not with an N-terminal
truncation of PRR lacking parts of the extracellular domain
(Figures S2A–2C; data not shown). Moreover, overexpressed
VhaPRR can be efficiently knocked down with VhaPRR RNAi
(Figures S2G and S2H).

VhaPRR Regulates Fz Trafficking in the Pupal Wing
We next analyzed different pupal stages between 28 and 36 hr
after pupal formation (APF). During this period in pupal devel-
opment, active PCP signaling leads to asymmetric PCP pro-
tein localization on the apical circumference of the hexagonally
shaped pupal wing cells and subsequent polarized prehair
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Figure 1. VhaPRR Is Required for Planar Cell Polarity

(A–C) VhaPRR RNAi-1 expression in the notum under the control of ap-GAL4 results in planar cell polarity (PCP) defects (B). Anterior-posterior alignment of

sensory bristles is impaired, particularly in the medial compartment. In addition, the number and spacing of bristles is altered. Control RNA interference

(RNAi) (A) and Frizzled (Fz) RNAi (C) are shown for comparison. Note that the scutellum is deformed when ap-GAL4 is expressed at 29�C.

(D and E) Scanning electron micrographs show the notum in higher resolution. In addition to the sensory bristles, the small epidermal hairs are mispolarized

and not restricted to one hair per cell in VhaPRR-silenced nota (E).

(F–H) The dpp and ptc expression domain runs as a narrow stripe between the longitudinal veins L3 and L4 (see Figure S4 for the marking of the knockdown

area in pupal wings). Images show details of the proximal anterior crossvein area (left) of the expression domain. Anterior is up.

(F) Wing hairs point in the proximodistal direction and show correct alignment in dpp-GAL4/+ wings.

(G) Wings expressing VhaPRR RNAi-1 with dpp-GAL4 show cell-autonomous PCP defects, including wing hair misorientation and multiple wing hairs

(red circle), in the proximal part. In addition to the PCP phenotypes, the dpp compartment is reduced in size, and vein material is either lost or ectopic.

(H–J) The overexpression of VhaPRR (the transgene is termed dPRR-mCherry) [40] also causes PCP defects. Note that when VhaPRR is expressed with

en-GAL4 (I), the hairs point from the posterior (bottom arrow) to the wild-type anterior compartment (top arrow). Unlike en>Fz, which shows nonautonomous

effects (J), the defects are confined to the posterior domain (I).
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formation (Figures 2A, 2C, and 2E; Figure S5). Fz is transported
in vesicles to distal cell junctions on proximodistally oriented
microtubules, leading to a peak in Fz asymmetry at w30 hr
APF and prehair formation on the distal part of the apical
surface at w32 hr APF [12]. We observed that in ptc>VhaPRR
RNAi wings, Fz was strikingly mislocalized at 28 hr APF. Fz did
not localize to distal cell junctions (marked by E-cadherin) and
was found in puncta away from the junctions (Figures 2A, 2B,
and 2D; Figure S4A). Fz puncta were not positive for another
PCP core protein, Flamingo (Fmi), suggesting a specific defect
in Fz trafficking (Figure S4A; data not shown). At 32 and 36 hr
APF, Fz localization was more junctional but also less
asymmetric compared with the typical zigzag localization
pattern of Fz outside of the ptc domain (Figures 2A–2E; Fig-
ure S4). This correlated with a delay in prehair formation and
with defects in prehair polarity (Figures 2B–2E; Figures S4B
and S4C). The severity and dimension of the Fz localization
defect was generally more pronounced at earlier stages,
when it affected the entire ptc domain (Figure 2A; data not
shown). At later stages, this defect and also the hair polarity
defects were confined to the area surrounding the anterior
crossvein, suggesting compensatory mechanisms, particu-
larly in the more distal areas (Figure S4C). We also found that
VhaPRR knockdown led to larger and irregular cell shapes.
This phenotype was visible at all time points examined, even
before 28 hr APF (Figures 2A–2E; Figure S4A’; data not shown).
It has previously been reported that hexagonal cell packing in
the pupal wing is controlled by PCP factors, including Fz, but
may also be affected by cell ablation [13, 14]. Because we
observed an increased number of cleaved Caspase 3 positive
cells in the ptc domain after VhaPRR knockdown, the cell
shape changes could indeed occur as a consequence of
apoptotic cell ablation (Figure S5A). Interestingly, the overex-
pression of the proapoptotic Eiger (under control of the
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Figure 2. VhaPRR Is Required for Correct Fz

Localization in the Pupal Wing

(A–E) VhaPRR RNAi was expressed using

ptc-GAL4, and pupal wings were examined at

w28 hr (A), 32 hr (B and C), and 36 hr (D and E)

after pupal formation (APF) at 25�C. In (A), an

overview of the pupal wing with ptc and wild-

type domains is shown. The ptc domain

comprises the area above vein L4 (L4 position is

indicated by the white bar; see also Figure S4).

Distal is to the right and posterior is down. An

enlargement of an area inside the ptc domain is

shown in (B) and (D), and an area posterior to

the ptc domain is shown in (C) and (E).

(A–A00) At w28 hr APF, the cell shape marked

with E-cadherin (E-Cad; A and A00) is larger and

irregular compared with the hexagonal cell

morphology in the posterior half without VhaPRR

RNAi expression. In addition, Fz localizes away

from distal cell junctions in cytosolic puncta in

the ptc domain (A’). A merge shows membrane

localization of Fz in wild-type cells, but not in

VhaPRR-silenced cells (A00). The higher magnifi-

cation insets show Fz accumulation at distal cell

junctions marked by E-cadherin in wild-type cells

and cytosolic Fz puncta in knockdown cells.

(B–C00) At w32 hr APF, prehairs start to form

outside (B), but not inside (C), the ptc domain,

suggesting a delay in prehair formation. Fz local-

ization is still less asymmetric and more cytosolic

in the ptc domain compared with the typical

zigzag pattern in the wild-type tissue (B’ and C’;

for Fz and Fmi at 34 hr APF, see Figure S4A).

(D–E00) At w36 hr APF, prehairs are significantly

longer. Mispolarization of prehairs and multiple

wing hair cells (*) can be seen in the ptc domain

(D),whereas in thecontrol area,hairsarestraight (E).

(D’) Fz assumes a more cortical localization at

w36 hr APF, especially in more distal regions of

the ptc domain (Figure S4C; for 34 hr APF, the

visualization of the ptc expression domain, and

a wild-type ptc domain, see also Figure S4).
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temperature-dependent GAL80ts) phenocopied the cell shape
changes but not the defects in Fz localization and prehair
polarity (Figures S5B and S5C). Therefore, we suggest that
VhaPRR has multiple effects on pupal wing morphogenesis.
Increased apoptosis and/or Fz-dependent cell packing
defects may account for the alterations in cell morphology,
and a specific effect on Fz trafficking during critical stages in
pupal development leads to PCP defects.

VhaPRR Interacts Genetically and Physically with Fz

in the PCP Pathway
To study the relationship between VhaPRR and Fz in more
detail, we turned to the Drosophila eye, a tissue very suitable
for quantitative PCP analysis and genetic interaction experi-
ments. In the eye, planar polarity regulates the orientation
and chiral organization of entire ommatidia, as well as the
specification of individual photoreceptors (such as R3 and R4)
within the ommatidium [15]. The sevenless (sev) enhancer-
driven expression is useful for PCP analysis, because it is tran-
siently expressed in both cells of the R3/R4 pair at a time when
PCP signaling is particularly active. Because Fz is required for
R3 specification, sev-GAL4-mediated Fz overexpression leads
to a high number of symmetrical ommatidia that contain two
R3 cells instead of the normal R3/R4 pair on the polar side of
the ommatidia (Figures 3A–3E) [16, 17]. Total PCP defects of
sev-Fz but not sev-Dishevelled (Dsh) or sev-Fmi eyes were
suppressed by one copy of the P element (EY03616) posi-
tioned in the 50 untranslated region of the VhaPRR gene. This
insertion causes early lethality when it is heterozygous over
deficiency ED9204, which uncovers the VhaPRR locus. It
may therefore be assumed that the insertion results in a mutant
allele of VhaPRR (VhaPRR1). The sev-Fz phenotype was not
suppressed by a revertant chromosome devoid of the P
element (Figures 3A, 3B, and 3E) but was enhanced by the
cooverexpression of VhaPRR (Figure 3B). The suppression of
the Fz phenotype could also be achieved by coexpressing
VhaPRR RNAi and was even more pronounced when counting
only symmetrical ommatidia instead of total PCP defects
(Figures 3A and 3C). The expression of the RNAi alone very
rarely caused PCP defects. However, these defects were
enhanced by one copy of VhaPRR1, providing further support
for the specificity of the RNAi (Figure S1B). Together, these
results suggest that VhaPRR interacts genetically with Fz,
but not with other PCP core proteins.

We next tested for physical interaction with Fz receptors.
Because of the evolutionary conservation of VhaPRR and
the positive rescue experiment (Figures S2 and S3), we used
V5-tagged XPRR to test for coimmunoprecipitation with
FLAG-tagged XFz8 (X for Xenopus). Unlike control transmem-
brane proteins, PRR and Fz8 coimmunoprecipitated each
other reciprocally in HEK293T cells (Figure 3F; data not
shown), confirming most recent results by others [18]. PRR
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Figure 3. VhaPRR Interacts Genetically and Physically with Fz

(A–C) The sev-Fz phenotype is suppressed by VhaPRR1 or by coexpression of VhaPRR RNAi.

(D and E) Tangential eye sections of adult eyes (top) with respective schematic representations (bottom). Dorsal and ventral ommatidia are depicted with

black and red arrows, respectively. Sections are around the equator, which is not visible in (D) because of the strong sev-Fz phenotype consisting of

symmetrical clusters (green arrows; schematic diagram in B), rotation defects, and chirality inversions.

(E) Heterozygous VhaPRR1 reduces PCP defects in the sev-Fz phenotype, particularly the number of symmetrical clusters, and also restores the equator

(blue line). Quantification for total PCP defects is shown in (A) and (B), and quantification of only symmetrical clusters is shown in (C). There is no genetic

interaction with other PCP core genes such as Dsh and Fmi (data are mean 6 standard deviation [SD] of at least three eyes with over 300 ommatidia scored,

two-tailed unpaired t test, **p < 0.001 and *p < 0.05).

(B) A revertant chromosome with excision of P element EY03616 (exVhaPRR1) does not suppress sev-Fz phenotypes compared with the chromosome

containing the P element (VhaPRR1). The cooverexpression of dPRR enhances sev-Fz PCP defects (data are mean 6 SD of at least four eyes with over

450 ommatidia scored, two-tailed unpaired t test, ***p < 0.0001 and **p < 0.005).

(F) V5-tagged XPRR (XPRR-V5) was coexpressed with FLAG-tagged XFz8 and a control protein (CD2AP-FLAG) in HEK293T cells (X for Xenopus).

After immunoprecipitation with anti-FLAG, XPRR-V5 was present in immunoprecipitates formed by XFz8-FLAG, but not by CD2AP-FLAG (left). In a similar

fashion, DFz bound to XPRR-V5, but not to the control transmembrane protein PKD2-V5 immunoprecipitates (D for Drosophila; DFz corresponds to Fz).

DFz2 also bound to XPRR-V5, albeit with a lower affinity (right). Each protein band is labeled with the corresponding protein name on the right side of

the blot.
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Figure 4. VhaPRR Modulates Canonical Wg Signaling

(A) Anterior wing margin of C96-GAL4/+ showing sensory

bristles. Formation of sensory bristles is controlled by peak

levels of canonical Wnt signaling and the expression of target

genes like senseless (sens) along the dorsoventral boundary.

(B) Silencing of VhaPRR in the area around the dorsoventral

boundary using C96-GAL4 results in intermittent loss of

sensory bristles, indicating a loss-of-function Wg phenotype.

(C and D) Confocal images of wing discs from third instar

larvae expressing GAL4 alone (C) or VhaPRR RNAi (D) in the

posterior (P) compartment with en-GAL4. Dorsal is up. The

anterior-posterior border is indicated by a white bar, as

judged by immunostaining of engrailed (not shown). Com-

pared with en-GAL4/+, sens staining is slightly reduced in

the P compartment of en>VhaPRR RNAi-2 discs, particularly

in more lateral regions (arrowhead).

(E) Wing discs stained by anti-Wg antibody displaying an

increase of total Wg protein in lateral regions of the P

compartment (arrowhead).

(E’) Staining of a wg-lacZ reporter with anti-b-gal antibody,

however, does not show an expansion.

(F) A protocol that exclusively stains extracellular Wingless

reveals an extracellular Wg fraction that is diffusely increased

in the dorsal (D) compartment when VhaPRR RNAi-1 is ex-

pressed with ap-GAL4. The area in the white box was used

for quantification (graph). All images are projections of

several wing disc sections (see also Figure S6 for more

images, Dll staining, and Wg/sens staining with ap-GAL4).
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also bound with high affinity to myc-DFz and with low affinity to
myc-DFz2 (D for Drosophila; Figure 3F). Whereas DFz2 only
functions in canonical Wingless (Wg), DFz functions in both
canonical Wg and PCP signaling [19]. Taken together, the
combined genetic and biochemical analysis argues for a
common role of Fz receptors and VhaPRR in PCP signaling,
possibly carried out in close proximity in the plasma mem-
brane and/or transport vesicles.

VhaPRR Modulates the Wg Morphogen Gradient
and the Expression of Wg Target Genes

Because Fz also functions in the canonical Wnt or Wg
pathway, we wondered whether VhaPRR is involved in this
pathway as well. During wing development, Wg controls the
differentiation of sensory margin bristle neurons at the dorso-
ventral (DV) boundary via the b-catenin-dependent pathway
through activation of target genes such as senseless (sens).
Expressing VhaPRR RNAi throughout the DV boundary with
C96-GAL4 resulted in areas without bristles in the adult wing
margin (Figures 4A and 4B). Immunostaining of the wing discs
revealed that sens was slightly reduced and irregular
compared to the control experiment, possibly explaining the
defects in the adult tissue. Apoptotic rates were not increased
in the wing disc (data not shown). The same effect on sens
expression was seen with two other wing drivers, en-GAL4
and ap-GAL4, in their respective expression
domains (Figures 4C and 4D; Figures S6C–S6E).
By contrast, Distalless (Dll) expression was not
significantly altered, suggesting that high-
threshold Wg signaling is predominantly affected
(Figure S6E’; data not shown). Wg is expressed
and secreted at the dorsoventral boundary, re-
sulting in a gradient of extracellular Wg with
decreasing levels of Wg on either side of the
boundary. We found that silencing VhaPRR
enhanced the Wg gradient (Figure 4E; Figure S6C).
Confinement of wg gene expression at the dorsoventral
boundary is the result of Notch signaling and of its own self-
repression [20, 21]. However, using a wg-lacZ reporter line,
we detected no difference in the spatial pattern of wg-express-
ing cells (Figure 4E’). This suggests that the increase in Wg
protein is not due to an increased Wg production. Next, we
stained for extracellular Wg protein and found a similar expan-
sion as for total Wg in the absence of VhaPRR (Figure 4F;
Figure S6D). Similar findings have been reported upon overex-
pression of the glypican dally-like (dlp), which promotes the
spread of Wg on the basal surface of the wing disc epithelium
[22, 23]. Based on our immunostainings, dlp expression was
not altered in the absence of VhaPRR (data not shown). Simi-
larly, the canonical Fz2 receptor and its coreceptor arrow,
which can also bind and internalize Wg, did not show an
altered localization pattern, at least not with the available anti-
bodies (data not shown) [24, 25]. Taken together, our results
demonstrate that VhaPRR modulates the Wg morphogen
gradient and the expression of a high-level Wg target gene.
The mechanism may not include altered steady-state localiza-
tion of dlp and Fz2, but it is possible that the activity of these
components is altered by VhaPRR deficiency. For example,
the signaling and internalization activity of the Fz receptor
complex may be reduced, and/or the Wg spreading activity
of glypicans may be enhanced [22].
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The Role of Other V-ATPase Subunits in PCP
and Wg Signaling

In mammals, it has been proposed that VhaPRR may act both
as a receptor for (pro)renin in the renal control of blood pres-
sure and as a subunit of the V-ATPase [6]. Very recent data
from Xenopus laevis suggests that the renin-binding function
of PRR is not involved in Wnt signaling. Furthermore, it was
shown that V-ATPase inhibitors block Wnt signaling by pre-
venting LRP6 phosphorylation in intracellular vesicles [18].
Because there are no clear renin homologs in the fly, we turned
our attention to the V-ATPase. V-ATPases are evolutionarily
conserved ATP-driven proton pumps composed of two multi-
component subcomplexes, the membrane-bound Vo, which
mediates electrogenic proton translocation, and the peripheral
V1, which is responsible for ATP hydrolysis. Many of the 15
Drosophila subunits are expressed by different paralogs and
splice variants. It is believed that this complexity contributes
to the functional diversity of the V-ATPase in different organ-
elles, cells, and tissues [4]. Biochemically, VhaPRR has been
found to associate with the membraneous Vo part of the
V-ATPase, but it is unknown whether it also participates in
proton transport [26].

To test whether the other V-ATPase subunits phenocopy
VhaPRR, we used three GAL4 drivers (C96-, dpp-, and
ap-GAL4) to silence a wide panel of V-ATPase subunits. As
shown in Table S1, 9 out of 13 subunits tested displayed
wing margin defects, which may be caused by defective Wg
signaling. Three subunits showed wing hair mispolarization,
and two subunits showed notum bristle polarity defects.
Knockdown of subunit B (Vha55) led to strong PCP defects,
but for all other subunits the PCP phenotypes were less severe
than those caused by VhaPRR knockdown (Figure S7B). The
reason for this rather low degree of phenotypic overlap
between VhaPRR and other subunits in Drosophila pheno-
types is unclear. Apart from technical reasons (e.g., ineffective
RNAi knockdowns), the redundancy provided by the different
Vha subunit paralogs may compensate for the function of
other subunits more effectively than the loss of VhaPRR, which
is encoded only by one gene and one splice variant. Although
further work is needed to characterize the contribution of the
individual V-ATPase subunits, our results and those of others
suggest that the role of VhaPRR in PCP and Wg signaling is
associated with V-ATPase function [18].

Discussion

Our findings identify VhaPRR as a novel regulator of both
Wingless and PCP signaling. Our genetic and biochemical
analysis proposes a function that is tightly linked to Fz recep-
tors. Very recently, it was described that PRR acts as a specific
adaptor between LRP6/arrow and the V-ATPase in the canon-
ical Wnt pathway [18]. This study expands the functional
spectrum of VhaPRR and proposes a requirement in the PCP
branch of the Wnt pathway where LRP6/arrow does not
seem to have a major role [27].

In the pupal wing, we observed impaired Fz localization,
irregular cell packing, and defective hair polarization. This
complex PCP phenotype of VhaPRR may be caused by the
dynamic expression pattern of the V-ATPase in different
cellular membranes [4, 28, 29]. In intracellular vesicles, the
V-ATPase serves as a pH sensor to regulate trafficking [30].
As such, the V-ATPase might regulate Fz receptor trafficking.
A more general role in membrane trafficking might explain
additional effects, e.g., on the Notch pathway [28]. However,
at least in pupal wings, there seems to be a specific defect in
Fz trafficking. Fz is normally transported in vesicles along
proximodistally oriented microtubules to distal cell junctions
before prehair formation [12]. In VhaPRR-silenced cells, Fz
accumulates in puncta away from the junctions, suggesting
a delay in the vesicular transport of Fz. The observed Fz vesi-
cles do not seem to contain Fmi, which normally travels in the
same transport vesicles [12]. Therefore, it will be important to
find out whether other properties such as luminal pH and move-
ment behavior are altered in VhaPRR-deficient Fz vesicles.

In vesicles and at the plasma membrane, the V-ATPase could
also be involved in creating a pH microenvironment that
promotes Fz signaling. As shown for other heptahelical trans-
membrane receptors such as rhodopsin [31], altered proton
concentrations could, for example, directly influence Fz
signaling by altering Fz conformations within the membrane.
Fz is upstream in a signaling cascade that leads to localized
actin filament assembly and prehair formation. The restriction
of actin-based hair growth to one site in the cell is also depen-
dent on the formin-homology domain containing protein mwh
[32, 33]. An interesting link to our data is the recent finding
that the formin for3p is regulated by a proton pump in polarized
cell growth of fission yeast [34]. Because the organization of the
actin cytoskeleton is strongly pH dependent, the V-ATPase
may promote actin assembly by regulating local pH [35]. It is
therefore intriguing to speculate that pH changes can couple
Fz signaling and actin organization to form a part of the cellular
machinery that properly localizes wing hair formation.

Proton transporters have been implicated in left-right
patterning and tissue regeneration, but the underlying molec-
ular mechanisms remain unclear [36, 37]. Because both pro-
cesses involve the canonical Wnt and the PCP pathway, our
study may provide a basis for mechanistic studies on the
role of proton gradients in morphogenetic signaling [38].
Most importantly, the identification of factors that regulate
the V-ATPase in this context may also shed light on the
missing upstream cues needed for the establishment of planar
cell polarity.

Experimental Procedures

Fly Strains and Genetics

Overexpression and transgenic RNAi studies were performed using the

UAS/GAL4 system (RNAi crosses grown at 25�C or 29�C; yw or an inx2

RNAi were control). VhaPRR RNAi lines (5830 or 105281; here termed

RNAi-1 and -2, respectively) from the Vienna Drosophila RNAi Center

(VDRC) were two nonoverlapping transgenic UAS-RNAi lines, and VhaPRR1

was the P element EY03616 from the Bloomington Stock Center (line 15665).

UAS-fz, UAS-dsh, and UAS-fmi strains were as described previously

[17, 39]. Ap-GAL4 (Bloomington Stock Center) was a notum and wing disc

driver, and sev-GAL4 (from M. Mlodzik) was an eye-specific driver.

ptc-GAL4 (from N. Perrimon), dpp-GAL4, nub-GAL4, C96-GAL4, and

en-GAL4 (all from the Bloomington Stock Center; the two latter lines also

contained UAS-Dicer2) were used for wing expression. To monitor the

expression domain of ptc-GAL4 and dpp-GAL4, we coexpressed UAS-

GFP. A wg-lacZ line (from H. Steller) was used for monitoring wg gene

expression. GAL80ts,UAS-Eiger (from I. Hariharan) was used for apoptotic

cell ablation. Excision of the P element was mediated by the D2-3 transpo-

sase generating a revertant chromosome that was viable over the deficiency

(exVhaPRR1). Excision of the P element was confirmed by polymerase chain

reaction. Transgenic flies expressing PRR-EGFP and dPRR-mCherry were

provided by M. Boutros [40]. To generate PRRDC-expressing transgenic

flies, we cloned PRRDC (from aa 282–351) into pUAST-attB and injected it

into flies with an attP landing site at 86FB by Bestgene.

Histology and Immunohistochemistry

Tangential sections of adult eyes were prepared as described [17].

Wing imaginal discs and pupal wings were dissected, fixed in 4%
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paraformaldehyde, and stained according to standard procedure. Extracel-

lular Wingless staining was performed as described [41]. The following

primary antibodies were used: mouse anti-Wg (1:50, Developmantal Studies

Hybridoma Bank [DSHB]), guinea pig anti-sens (1:1000, by H.J. Bellen),

mouse anti-dlp (1:50, DSHB), rabbit anti-Fz2, rat anti-Dll (1:2000 and

1:500, both by S. Cohen), guinea pig anti-arrow (1:200, by S. Eaton), rabbit

anti-Fz (1:200, by D. Strutt), rabbit anti-b-gal (1:1000, MP Biomedicals),

mouse anti-Fmi (1:50, DSHB), rabbit anti-cleaved Caspase 3 (1:200, Cell

Signaling Technology), rabbit anti-engrailed (1:50, Santa Cruz), and rat

anti-E-cadherin (1:40, DSHB). Secondary antibodies and rhodamine-

phalloidin were obtained from Invitrogen. Images were captured using a

Zeiss LSM 510 confocal microscope and were processed with ImageJ

and Adobe Photoshop CS4 software. Wings were incubated in isopropanol

for 15 min, mounted in Euparal (Roth), and viewed using a Zeiss Axioplan

microscope. For electron microscopy, flies were dehydrated in ethanol,

isopropanol, and aceton and then dried in a Balzers CPD 020 critical point

dryer. Afterward, specimens were coated with gold in a Polaron E500

Cool Sputter Coater and imaged in a Zeiss Leo 430 scanning electron

microscope.

Coimmunoprecipitation

Coimmunoprecipitations were performed as described previously [42].

Briefly, HEK293T cells were transiently transfected by the calcium

phosphate method with PRR-V5 and FLAG-XFz8, as well as with myc-DFz

and myc-DFz2 and the control proteins FLAG-CD2AP and PKD2-V5,

respectively. After incubation for 24 hr, cells were washed and lysed in

a buffer containing 20 mM Tris-HCl (pH 7.5), 1% Triton X-100, 50 mM NaF,

15 mM Na4P2O7, 0.1 mM EDTA, 150 mM NaCl, 1 mM Na3VO4, and protease

inhibitors. After centrifugation (15,000 3 g, 30 min, 4�C) and ultracentrifuga-

tion (100,000 3 g, 30 min, 4�C), cell lysates containing equal amounts of total

protein were incubated for 1.5 hr at 4�C with the appropriate antibody,

followed by incubation with 25 ml of anti-FLAG M2-beads (Sigma) or V5

antibody-bound protein A Sepharose beads for 3 hr . The beads were

washed extensively with lysis buffer, and bound proteins were resolved

by SDS-PAGE. Antibodies were rabbit anti-FLAG (1:1000, Sigma), mouse

anti-myc 9E10 (1:1000, Santa Cruz), mouse anti-V5 (1:3000, Serotec), and

rabbit anti-V5 (1:4000, Sigma).

Supplemental Information

Supplemental Information includes seven figures and one table and can be

found with this article online at doi:10.1016/j.cub.2010.05.057.
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