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ARTICLE INFO ABSTRACT

The Hsp70 homolog Ssb directly binds to the ribosome and contacts a variety of newly synthesized
polypeptide chains as soon as they emerge from the ribosomal exit tunnel. For this reason a general role of
Ssb in the de novo folding of newly synthesized proteins is highly suggestive. However, for more than a
decade client proteins which require Ssb for proper folding have remained elusive. It was therefore
speculated that Ssb, despite its ability to interact with a large variety of nascent polypeptides, may assist the
o folding of only a small and specific subset. Alternatively, it has been suggested that Ssb's function may be
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gﬁﬂ‘;":ffm limited to the protection of nascent polypeptides from aggregation until downstream chaperones take over
Hsp70 and actively fold their substrates. There is also evidence that Ssb, in parallel to a classical chaperone function,
Ribosome is involved in the regulation of cellular signaling processes. Here we aim to summarize what is currently
Pratein folding known about Ssb's multiple functions and what remains to be ascertained by future research.

SNFI © 2010 Elsevier B.V. All rights reserved.
Signaling

Translation

Translational fidelity
Snccharomyces cerevisiae

1. Hsp70 homologs — common principles

A canonical Hsp70 (70 kDa heat-shock protein) consists of a
~45 kDa N-terminal ATPase, a ~15kDa peptide binding, and a
~10 kDa variable C-terminal domain. Hsp70s perform a broad range
of different tasks based on one simple principle: the C-terminal
peptide binding domain dynamically interacts with hydrophobic
segments of substrate polypeptides and this substrate binding and
release cycle is controlled by the N-terminal ATPase domain, which
alternates between the low affinity ATP, and the high affinity ADP
state. Co-chaperones regulate Hsp70 function via modulation of the
ATPase cycle. One family of co-chaperones is the |-domain proteins,
which transiently interact with the ATPase domain and stimulate ATP
hydrolysis. Via this mechanism J-domain proteins induce tight
substrate binding [ 1,2]. The other major class of Hsp70 co-chaperones
is the nucleotide exchange factors (NEFs), which enhance the
exchange of ADP with ATP and by this means promote the release
of substrate peptides [1].
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2. Cytosolic Hsp70 homologs of yeast — chaperones
and co-chaperones

Four subfamilies of Hsp70s localize to the cytosol of yeast. The Ssa-
family, consisting of the closely related but differentially expressed
S5A1-4 genes, the Ssb-family, encoded by the constitutively expressed
close homologs SSBI and $SB2, the Sse-family, consisting of
constitutively expressed SSEI and the stress-inducible SSE2, and
constitutively expressed S5Z1 [3-6]. Like all members of the Hsp70
family, the cytosolic Hsp70s of yeast show a high degree of
conservation, especially within their N-terminal ATPase domains [7|
(Fig. 1). The cytosolic Hsp70s form an interconnected network in
which Ssa and Ssb are the central chaperones with distinct and non-
overlapping functions [3,8] while Sse [9-14], and Ssz1 [15-17] act as
their co-chaperones. Expression of at least one of the 5SA and SSE
family members is essential for the life of yeast, while strains lacking
SSBor SSZ1 are viable [3,11,18,19]. $SB and 5521 are genetically linked,
because AsshiAssh2, Asszl, or Assb1Assb2Assz1 strains suffer from a
similar set of specific growth defects, such as slow growth, cold
sensitivity, and aminoglycoside sensitivity [15,16], and overexpres-
sion of Ssb1 partly suppresses growth defects of a Assz1 strain [16,20].
Ssz1 binds to ATP but does not hydrolyze the nucleotide; nucleotide
binding is not strictly required for its in vivo function [17,20].
Consistently, even overexpression of a Ssb mutant, which cannot
hydrolyze ATP can partly suppress the phenotype of a Assz[ strain [20].
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A
Ssbl MAEGVFQGAI GIDLGTTYSC VI\TYESMI IANEQGNRVT H RLIGDAAKNQ AALNPRNTVF DAKRLIGRRF
Ssb2 MAEGVFQGAI GIDLGTTYSC VATYESSVEI IANEQGNRVT P! RLIGDAAKNDQ AALNPRNTVF DAKRLIGRRF
Ssbl DDESVQKDMK TWPFKVIDVD GNPVIEVQYL EETKTFSPQE ISAMVLTKMK EIAEAKIGKK mel YFNDAQRQAT
Ssb2 DDESVQKDMK TWPFKVIDVD GNPVIEVQYL EETKTFSPQE ISAMVLTKMK EIAEAKIGKK VEKAVITVEA YFNDAQRQAT
Ssbl KDAGAISGLN VLRIINEPTA AAIAYGLGAG KSEKERHVLI mImG'lTDV SLLHIAGGVY TVKSTSGNTH LGGQDFDTNL
Ssb2 KDAGATSGLN VLRIINEPTA AAIAYGLGAG KSEKERHVLI FDLGGGTFDV SLLHIAGGVY TVKSTSGNTH LGGQDFDTNL
Ssb2 LEHFKAEFKK KTGLDISDDA RALRRLRTAA ERAKRTLSSV TQTTVEVDSL FDGEDFESSL TRARFEDLNA ALFKSTLEPV
Ssbl EQVLKDAKIS KSQIDEVVLV GGSTRIPKVQ KLLSDFFDGK QLEKSINPDE lmm AILTGQSTSD ETKDLLLLDV
Ssb2 EQVLKDAKIS KSQIDEVVLV GGSTRIPKVQ KLLSDFFDGK QLEKSINPDE AVAYGARVQG TGQSTSD ETKDLLLLDV
Ssbl APLSLGVGMQ GDMFGIVVPR NTTVETIKRR “NQT TVQFPVYQGE RVNCKENTLL GEFDLKNIPM MPAGEPVLEA
Ssb2 APLSLGVGMQ GDEFGIVVPR NTTVETIKRR NQT TVQFPVYQGE RVNCKENTLL GEFDLKNIPM MPAGEPVLEA
Ssbl IFEVDANGIL KVTAVEKSTG KSSNITISNA VGRLSSEEIE KMVNQAEEFK AADEAFAKKH EARQRLESYV ASIEQTVTDP
Ssb2 IFEVDANGIL KVTAVEKSTG KSSNITISNA VGRLSSEEIE KMVNQAEEFK AADEAFAKKH EARQRLESYV ASIEQTVTDP
Ssbl VLSSKLKRGS KSKIEAALSD ALAALQIEDP SADELRKAEV GLEKRVVTKAM SSR
Ssb2 VLSSKLKRGS KSKIEAALSD ALAALQIEDP SADELRKAEV GLKRVVTKAM SSR
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Fig. 1. The Ssb1 and 5sb2 homologs of Sacch

yees cerevisiae, (A) The ATPase domain ( 1-384) is shown in green, the peptide binding domain (385-558) is shown in pink, and the

C-terminal domain is shown in yellow (559-613). Amino acid residues conserved in the cytasolic Hsp?0 homologs of yeast (Ssal-4, Ssb1-2, Sse1-2, Ssz1) are shown in blue. Amino
acid residues which differ between Ssbl and Ssb2 are shown in red, and the nuclear export signal { NES) is shown in orange. For details compare text. {B) Model of the Ssb1 structure
generated by FTASSER protein structure and function prediction (http://zhang.bioinformatics ku.edu/I1-TASSER/ [142-144]). The colour code is as described in (A),

Ssz1 is intimately connected to the Hsp40 co-chaperone family
because it is a component of the Ssb specific J-domain partner termed
RAC (ribosome-associated complex) [19]. RAC, which binds ribosomes
close to the tunnel exit [21] consists of Ssz1 and the J-domain protein
Zuo1 |19/, which is required for binding of the complex to ribosomes
[22]. The function of this unusual heterodimeric chaperone complex is
conserved from yeast to higher eukaryotes [23,24]. Both subunits of
RAC are required for its function as a J-domain partner of Ssb in vivo
and in vitro [ 15-17,20]. Genetic evidence suggests that Ssb1 may also
partner with the Hsp40 homolog Sis1 |25] and also binding of Ssb to
Sis1 has been reported |26]. On the other hand neither Sis1, nor the
cytosolic Hsp40s Ydj1 and Jjj1 stimulate the rate of ATP hydrolysis by
Ssb as would be expected from partner co-chaperones [17,27-30]. In
which way Sis1 affects the function of Ssb1 remains to be determined.
According to a recent report the ATPase activity of Ssb can be
stimulated by Ydj1 when prion fibers are added to the reaction |31].

Ssel, Fes1, and Snl1 can act as NEFs for Ssbin vitro [9-12,32,33]. In
contrast to RAC, which is bound to ribosomes and functions specifically
in concert with Ssb, Fesl [34], Snll [32], and Ssel [9,10] are
predominantly soluble in the cytosol and also act as NEFs for Ssal
|34,35|. Fesl and Ssel accelerate the release of nucleotide from Ssb
in vitro [11,12,33|. However, when the ATPase activity of Ssb was
tested in the presence of both co-chaperones, RAC and Fesl, it was
inhibited rather than stimulated |33]. This is unexpected because the
stimulation of ATP hydrolysis (via RAC) in combination with enhanced
nucleotide release (via Fes1) should lead to an accelerated rate of ATP
hydrolysis at steady state. Binding of a Hisg-tagged, C-terminal Snl1-
fragment to Ssb has been demonstrated in yeast lysates, but Snl1 does
not significantly affect the rate of nucleotide exchange on Ssb. Snll
may primarily function in combination with Ssa, while the affinity of
Ssb for nucleotides might be so low that it does not require NEF
function in vivo |32]. Similar considerations apply for nucleotide
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exchange on Ssb in general. If Ssb would strictly depend on the NEFs
in vivo one would expect growth defects of Afes! and Assel strains to
overlap with those of a AssblAssb2 strain. However, the Afes] and
Assel mutants resemble strains with defects related to Ssa and Ssa's |-
domain partners [34.36-38). In summary, the in vivo role of NEFs for
Ssb's function has so far remained unclear. Possibly Ssb does not
require NEFs in vivo; alternatively, Ssb may not discriminate between
different NEFs, which then could functionally replace each other.

3. Ssb is encoded by the closely related genes SSB1 and S5B2

SSB1 and SSB2 are transcribed with similar efficiencies and the
Ssb1 and Ssb2 proteins differ in only four amino acids (Fig. 1). The
single deletion strains Assbl and Assb2 do not display significant
growth defects indicating that at least in many respects the two copies
of 5B are functionally interchangeable and a steady state level of
about 50% Is sufficient to sustain cellular functions [3,39). However,
there is an indication that the in vivo roles of Ssb1 and Ssb2 might
differ in at least some aspects. SSBI, but not of SSB2, acts as a
multicopy suppressor in yeast mutants lacking mitochondrial DNA
[40]; Ssb1, but not Ssb2, was found to bind to calmodulin [41].
Interestingly, a recent genome scan aimed at the identification of
signatures of selection for paralogous functional amino acids revealed
that three of the amino acids which differ between Ssb1 and Ssbh2 have
been protected by selection against gene conversion for a long time not
only in S. cerevisiae but also in other yeast species [42]. The finding
suggests that the three amino acids, M413, C435, A436in Ssb1 and 1413,
V435, and S436, in Ssb2, which are localized within the peptide binding
domains (Fig. 1) have an important effect on the function of Ssb.

3.1. Transcriptional regulation of S5B

The two genes encoding 558 are regulated in a similar fashion and
it was noticed early that transcriptional regulation of SSBI and S5B2
closely resembles regulation of genes encoding ribosomal proteins
and other core components of the translation machinery [6,35,39,43].
Regulation of the translational machinery reflects that the preferred
energy source of yeast is glucose, which it utilizes via fermentation
even under aerobic conditions. Consequently, in the presence of
glucose genes required for respiration and alternative carbon source
utilization are strongly repressed. At the same time transcription of
genes encoding components of the translational machinery is strongly
enhanced, because fermentation of glucose presents the opportunity
for most efficient mass accumulation [44-46G). When glucose is
depleted, e.g. in an older batch culture, glucose repression is relived
and genes involved in respiration are now transcribed while genes
encoding components required for protein synthesis are turned off.
The transition between turning on and off glucose repression requires
a massive transcriptional re-programming and involves a number of
major signaling pathways [44-46].

SSB is most highly expressed on glucose, followed by galactose,
and ethanol [47]. SSB is induced during the lag- and early exponential
phase of growth in glucose medium when yeast generates energy via
fermentation [48]. During the diauxic shift, or upon transfer from
glucose- to glycerol-containing medium, SSB transcript levels de-
crease in abundance [6,39,49]. As many other genes encoding
components of the translational apparatus SSB is also down-regulated
upon amino acid starvation [6,39]. Despite Ssb's classification as a heat
shock protein, the expression of S5B is strongly and rapidly repressed
upon temperature up shift [3,6]. Only 5 min after a shift from 23 °Cto
39 °C, the level of SSB mRNA decreases by approximately 80% [49].

4. Cellular localization of Ssb versus Ssa

Ssb (~300000 molecules per cell [50,51]) and Ssa (~600000
molecules per cell [51]) are highly abundant Hsp70s which are more

than 60% identical on the amino acid level [7]. While both localize to
the cytosol their distribution differs significantly. First, only Ssb is
excluded from the nucleus at steady state. To that end, Ssb contains a
functional nuclear export signal (NES) in its C-terminal variable
domain [52] (Fig. 1). It has been hypothesized that Ssb plays a role in
the nucleus, which might be related to ribosome biogenesis,
proteasome-mediated protein degradation, or regulation of gene
expression |52]. As Ssb lacking the C-terminal variable domain is
active, but no longer excluded from the nucleus, active export at least
is not essential for its cellular function [52,53]. In the cytosol a large
fraction of Ssb is directly associated with ribosomes, the remainder is
soluble [8,50,54|. In contrast, Ssa does not directly interact with
ribosomes, and only a small fraction co-sediments with translating
ribosomes [8,35,55]. Ribosome association of Ssa is thought to be
mediated via interaction with nascent polypeptides, and/or interac-
tion with factors involved in translation initiation [55].

After cell lysis about half of the Ssb molecules co-purify with
ribosomes |50,54]. As the number of ribosomal particles in a cell
approximately equals the number of Ssb molecules this suggests that
about 50% of the ribosomes are occupied by Ssb [8,50,54|. Most
likely, the situation is not static and Ssb cycles on and off ribosomes,
however, the dynamics of the interaction has not yet been
determined. Also, the Ssb binding site on the ribosome has not
been identified so far. Ssb is thought to bind close to the ribosomal
tunnel exit. This localization is suggested first, because of Ssb's close
proximity to even short nascent polypeptides [50,56,57, and second,
because of its functional interaction with RAC [15-17,20]. which
binds in proximity of RpI31 at the tunnel exit [21]. RAC, however,
does not affect the binding of Ssb to ribosomes and vice versa [58].
Ssb binds to ribosomes in at least two different modes, which can be
distinguished by the stability of Ssb-ribosome complexes in the
presence of high salt concentrations. When bound to non-translating
ribosomes, Ssb can be stripped off with high salt; when bound to
ribosomes exposing a nascent polypeptide, Ssb is resistant to high
salt treatment |50,56]. Protein-nascent chain interactions that persist
conditions of high ionic strength are predicted to involve hydropho-
bic surfaces [59]. Thus, a possible explanation for the salt-resistance
is that ribosome-bound Ssb establishes additional interactions with
hydrophobic stretches of a nascent polypeptide. Unexpectedly,
however, Ssb was found to bind in a salt-resistant manner even in
the presence of 10 mM ATP [56]. As ATP releases Hsp70s from their
polypeptide substrates, this should reduce salt-resistance caused by
interactions between Ssb and the nascent polypeptide. Another
mechanism that may induce salt-resistance is a conformational
change within the actively translating ribosome affecting the
interaction of Ssb with the ribosome itself. Such a conformational
change would have to be transmitted from the peptidyl transferase
center to the ribosomal binding site of Ssb.

5. Biochemical properties of Ssb versus Ssa

The question how the different domains of Ssb and Ssa contribute
to their localization and functional specificity has been addressed
with a series of chimeras containing all combinations of the ATPase,
peptide binding, and variable domains of Ssb (BBB) and Ssa (AAA)
[8,53,60,61].

Purified Ssal has an ATPase activity very similar to that of other
canonical Hsp70s, with a Km for ATP in the order of 0.2 pM and a kcat
of 0.04 ATP min ' at physiological potassium concentrations [62].
Purified Ssb has a Km of ~150-300 pM and a kcat of approximately
1 min ' [60]. Thus, compared to the unstimulated ATPase of Ssa, Ssb
displays a 1000x higher Km but hydrolyzes ATP about 50-times faster.
These unusual properties are determined by the peptide binding and
variable C-terminal domains of Ssb because the ABB chimera was
found to have very similar kinetic properties compared to wild type
Ssb. Moreover, the isolated ATPase domains of Ssb and Ssa are
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kinetically similar [60]. The data indicate that the peptide binding and
C-terminal domains of Ssb have a significant effect on the ATPase
domain they are fused to.

However, the situation is more complicated and the specialization
of Ssb is not simply a consequence of its special peptide binding
domain. A chimera in which the peptide binding domain of Ssb is
replaced with the peptide binding domain of Ssa (the BAB chimera)
efficiently rescues the major growth defects of a Assb1Assh2 strain,
while wild type Ssa does not [8,53]. The observation suggests that the
peptide binding domains of Ssa and Ssb display a considerable degree
of flexibility [1], which allows the Ssa peptide binding domain in the
BAB chimera to accommodate Ssb substrates. This interchangeability
of the Ssa and Ssb peptide binding domains is intriguing because none
of the peptides or permanently unfolded proteins which readily bind
to Ssa and stimulate its ATPase bind to, or stimulate Ssb [53,56,60].
Chimeras BAA and AAB fail to rescue aminoglycoside sensitivity of a
Assb1Assb2 strain and do not bind to polysomes, while ABB as well as
BAB chimeras confer aminoglycoside resistance and interact with
ribosomes |8]. The observations suggest that the C-terminal domain of
Ssb is required for ribosome binding and that ribosome binding is
relevant to prevent aminoglycoside sensitivity of yeast. In any case, it
is not understood what allows Ssb to interact with nascent peptides in
the context of the ribosome [16,50,56,57,60,63|, and how this
interaction can even persist ribosome release [9,35), while Ssb on its
own has no significant affinity for peptides or unfolded proteins in
solution. Recently it was discovered that even in the context of the
ribosome Ssb interacts with many, but not all types of nascent chains.
If a nascent chain contains a signal anchor sequence which recruits the
ER targeting factor SRP [64], this nascent chain does not bind to Ssb
[50,63). Whether this is due to intrinsic properties of the nascent
chain or results from sterical hindrance between Ssb and SRP at the
tunnel exit in respect to interaction with the nascent chain is currently
not known.

6. The ribosomal function of Ssb can be partly replaced by Ssa
recruited to the ribosome via J-domain proteins

As outlined above, growth defects of the AssblAssb2 deletion
cannot be complemented by overexpression of its close homolog Ssa
|8]. However, overexpression of the ribosome-bound Hsp40 [jj1,
which serves as a partner of Ssa but not Ssb [29], quite efficiently
rescues the slow growth and cation-sensitive phenotype of a
Assh1Assb2 and even a AssblAssb2AzuolAssz1 strain [29). Based on
the data it was suggested that ]jj1, which is about 40-fold less
abundant compared to Zuol, recruits Ssa to ribosomes when
overexpressed. When localized to the ribosome via Jjj1 Ssa is able
to take over the function(s) of Ssb [29]. Such a model is supported by
the observation that overexpression of the mammalian Zuol
homolog MPP11 partially suppresses cation and aminoglycoside
sensitivity not only of a Azuol [23,24] strain but also of a
AssblAssb2Azuol strain [23]). MPP11 can stimulate the ATPase
activity of Ssa and thus likely enables Ssa to take over Ssb's ribosomal
function [23]. Finally, even two prokaryotic folding chaperones
unrelated to the Hsp70 and Hsp40 families were found to suppress
growth defects of a AsshlAssb2 strain. E coli Trigger Factor (TF) is
structurally unrelated to Ssb, however, like Ssb binds to non-
translating and translating ribosomes as well as to nascent chains
|G5,66). When expressed in yeast, TF interacts with ribosomes and
forms a crosslink to nascent polypeptides. TF partly complements the
aminoglycoside sensitivity of a Assb1Assb2Azuo1Assz] strain, while it
does not complement slow growth or cold sensitivity [67]. Thus, TF
which is structurally entirely unrelated to Ssb specifically suppressed
the defects related to translational fidelity. The common theme of the
Assb1Assh2 suppressors Jjj1, MPP11, and TF is their ability to directly
interact with the ribosome. A remarkable exception of this rule is
bacterial GroEL, which serves as a post-translational folding chamber

for an essential subset of client proteins in bacteria |66,68).
Overexpression of GroEL was found to fully rescue growth defects
of a Assh1Assh2 strain [35). Unexpectedly, in this case GroEL was a
suppressor of Assb1Assb2, but failed to suppress in a Azuol or Assz]
background.

7. The role of Ssb in de novo protein folding — evidence awaiting
positive proof

The idea that Ssb aids nascent polypeptide folding emerged early,
when it was discovered that Ssb interacts with ribosomes [54]. The
view is supported by the finding that Ssb does not only interact with
ribosomes directly but also contacts a variety of nascent polypeptide
chains [16,35,50,56,57,63|. Based on these findings models viewing
Ssb as a co-translational folding helper have been presented in a
number of reviews on the topic of cytosolic protein folding [69-73).
The models predict that ribosome-bound Ssb plays an early and
general role in protein folding and Ssa, or other cytosolic chaperones,
take over after synthesis is complete (Fig. 2). Based on experimental
data it was alternatively suggested that Ssb might assist the folding
of only a small and specific subset of nascent chains [74,75] or serve as
a passive holdase rather than foldase [33]|. However, to date a protein
which requires Ssb for successful de novo folding has not been
identified.

An unbiased approach aiming on the identification of Ssb's folding
substrates did not settle the issue. To identify proteins which fold less
efficiently in the absence of Ssb, the soluble proteome of Assb1Assb2
and wild type strains was directly compared [76). While differences in
the expression level of specific proteins exist, these are not related to
translational or post-translational events - like folding - but turned
out to result from transcriptional deregulation in the AssblAssb2
strain | 76]. A caveat in respect to the proteome approach is that only
the most abundant, approximately 1000, yeast proteins are detected.
Folding substrates of Ssb might be hidden among the proteins
expressed with lower efficiency. Also, other chaperones may take over
Ssb's function in the Assb1Assb2 strain. In this respect it is interesting
that in a Assh1Assb2 strain the co-translational association of Ssa with
nascent chains is enhanced, suggesting that Ssa can partly replace Ssb
|9]. Enhanced interaction of Ssa in the Assb1Assb2 background on the
other hand disfavors a model in which Ssb is required to hand over
nascent chains to Ssa (Fig. 2). What is interesting in this context is that
the expression level of Ssa is not increased in a AssblAssb2 strain
|76,77] and overexpression of Ssa does not suppress defects of a
Assb1Assb2 strain [3,8).

A recent in vivo screen addressed the question whether Ssb is
required for the in vivo folding of a set of mutant proteins with
decreased structural stability [78]. The hypothesis behind the
approach was that destabilized client proteins require chaperone
function even more strictly than their stable wild type counterparts.
Unexpectedly the outcome was the opposite: in the absence of Ssb
(or also its co-chaperone RAC) the activity of structurally destabilized
proteins was enhanced rather than reduced. De novo folding
seemingly is not only independent of Ssb and RAC but even furthered
in the absence of the chaperones. Importantly, the expression level of
the destabilized proteins is not affected in the Assh1Assbh2, Asszl, or
Azuol strains compared to wild type. This indicates that the increase
in steady state activity of the destabilized proteins is not due to their
escape from degradation in the absence of the chaperones. Based on
these findings, the authors suggest that Ssb and RAC might be
optimized to assist the folding of native proteins only, while folding of
point mutants with reduced stability is not supported [78]. However,
positive evidence that any of the proteins tested, native or
destabilized by mutations, folds less efficiently in a AssblAssb2 or
Azuol strain is not available |78,79]. The interesting but puzzling
observation rather seems to challenge the idea of a role of Ssb and RAC
in protein folding.
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release followed by capture
of folding chaperones

2 direct transfer

1 simultaneous release of
Ssb and nascent chain

transfer from Ssb to
folding chaperones

folding of newly synthesized proteins

Frledi

Fig. 2. Different models for the transfer mechanism of nascent chains from the ribosome to chaperones mediating their g Newly synthesized polypeptides (nascent chains) exit
the ribosome through a tunnel, which spans the large ribosomal subunit from the peptidyl transferase center (FTC) 1o the exit. At the platform surrounding the exit, Ssb and its co-
chaperone RAC bind. In the case of RAC the binding site involves Rpl31 (31), in case of Ssb the binding site is unknown. Ssb contacts nascent chains directly, the interaction depends
on RAC. (1) Ssb may be an intermediate holdase on the way to the folded state of its client proteins. In this model Ssb interacts with nascent chains during their synthesis and the
interaction persists when the synthesis is complete and the nascent chain is released from the ribosome. In a next step the nascent chain is transferred to chaperones like Ssa which
actively mediate folding. (2) Ssb may facilitate nascent chain transfer to folding chaperones, In this model Ssh interacts with nascent chains during their synthesis and presents them to
folding chaperones like for example Ssa, which also interact co-translationally with the nascent chain, however, do not interact directly with the ribosome, Without Ssb the transfer
to Ssa is affected and as a consequence folding is less efficient. {3) Ssh may serve an as yet unknown function during translation. Ssb interacts with nascent chains during their synthesis,
however, this interaction does not mediate folding or transfer to other chaperones. Instead, folding chaperones like Ssa bind either co- or post-translationally and mediate folding to
the native state. The role of Ssh may be related 1o maintaining translational fidelity via assisting transport of the nascent chain through the exit tunnel, degradation of nascent chains
which stall the ribosome, co-translational targeting to specific cellular compartments, or presentation of nascent chains to modifying enzymes. Models 1-3 are not mutually
exclusive. For details and references compare the text.

8. Phenotypic characteristics of yeast lacking Ssb — hints on  grow below 20 °C, display moderate slow growth at 30 °C, and grow

in vivo functions with a rate very similar to wild type at 37 °C|[3,54,76]. Only recently it
was recognized that slow growth of the Assb1Assb2 strain depends on
8.1, Carbon source dependent slow growth the carbon source supplied for growth. The Assh1Assb2 strain displays

slow growth on glucose containing media, while on ethanol or other
Despite homology to the heat-shock protein family of Hsp70sSsbis ~ media utilized via respiration slow growth is significantly less
not induced by heat shock (compare above). Cells lacking Ssb fail to pronounced | 76].
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8.2. A ribosome-independent function of Ssb in glucose repression

Consistent with a carbon source specific growth defect it was
recently discovered that glucose-grown Assb1Assb2 cells suffer from
deregulation on the transcriptional level similar to mutants affected in
glucose repression [76]. Microarray analysis comparing transcript
levels of wild type and AssblAssb2 growing logarithmically on
glucose, revealed that up-regulated transcripts in AsshlAssh2 were
highly overrepresented among the ones involved in oxidative
phosphorylation and the citrate cycle. In the same study, down-
regulated transcripts in Assh1Assb2 were found to be overrepresented
among the ones involved in processes related to amino acid and
sulphur metabolism and also in transcripts encoding ribosomal
proteins |76]. The AssblAssb2 strain displays additional similarities
with mutants affected in glucose sensing. The AsshlAssb2 strain is
unable to respond to sudden glucose depletion with a transient shut-
off of translation initiation [76]. One of the originally described
mutants defective in translational shut-off induced glucose depletion
is the Aregl mutant [80). Reg1 regulates the interaction of the type 1
protein phosphatase Glc7 with specific substrates [81]. Most impor-
tantly, Glc7 is targeted to the heterotrimeric kinase SNF1 via the Regl
regulatory subunit [82,83] (Fig. 3). SNF1, which is regulated via
phosphorylation/dephosphorylation of a specific threonine residue of
its Snf1 subunit, on its part is a central player of glucose signaling in
yeast [84,85]. In the presence of glucose Snf1 is dephosphorylated and
inactivated by Glc7/Regl. In a Aregl strain, Snfl remains phosphor-
ylated in the presence of glucose and glucose repression is not
established [81-83] (Fig. 3). For recent reviews on glucose sensing in
yeast compare |44-46],

There is evidence for physical interaction between Ssb and Regl
from two-hybrid as well as pull-down experiments [86,87] (Fig. 3). It
was suggested that the interaction between Ssb and Regl may serve
as a metabolic sensor to modulate the activity of Glc7/Reg1 towards
Snfl [87]. Several observations support the idea that Ssb effects the
activity of Glc7/Regl towards its target Snfl [76]. i) Snfl is
hyperphosphorylated in the presence of glucose in the Assh]Assbh2
strain, ii) AssblAssb2 and Aregl strains display similar patterns of
deregulated protein expression iii) overexpression of Ssb efficiently
reduces the level of Snfl hyperphosphorylation in a Aregl strain, and
iv) overexpression of Ssb efficiently suppresses the severe growth
defects of a Aregl strain [76]. But how can Ssb influence the interplay
between SNF1 and Glc7/Reg17? It is unlikely that Ssb is involved in the
folding/stabilization of Glc7 in the absence of the targeting subunit
Reg1, because the steady state level of Glc7 is not decreased in a Aregl
or Assb1Assb2 strain [76] and Glc7, in the absence of Aregl, functions
normally in combination with other targeting subunits [44-46]. An
interesting possibility is that Ssb contributes to SNF1 signaling via
regulating the transient interactions between SNF1 and Glc7/Regl
(Fig. 3). SNF1 and its mammalian homolog AMP-activated kinase
(AMPK) are central energy sensors in all eukaryotic cells [88]. Unlike
mammalian AMPK, and besides the high homology between yeast
SNF1 and mammalian AMPK, SNF1 does not seem to bind AMP
directly, and thus must sense the energy status of the cell by a
different mechanism [89]. It is intriguing, but at present speculative,
that Ssb may act as a sensor of the cellular ATP status in the context of
the SNF1 signaling pathway. The unusually high Km value for ATP
hydrolysis (compare above) and the fact that the reported cellular
ATP concentration in yeast vary in the range of 0.04-4.8 mM [90]
would predestine Ssb for such a function. Alternatively, Ssb and SNF1
might be connected via the regulation of the heat-shock transcription
factor (HSF) which responds to heat stress as well as glucose
starvation [91,92]. Induction of HSF target genes in response to
glucose starvation, but not heat shock, depends on Snfl [91,92]. Snf1
interacts with HSF in vivo and HSF was shown to be a substrate of
Snfl-mediated phosphorylation in vitro [92]. The combined data
suggest that SNF1 may directly phosphorylate HSF in response to

glucose starvation in a manner distinct from that occurring in
response to heat shock [91]. Interestingly, Ssb was shown to interact
with HSF directly and it was suggested that Ssb binding may directly
influence the activation of HSF [93]. Alternatively, SNF1-dependent
phosphorylation of HSF might be enhanced in the Assh1Assb2 strain
because of the irregular hyperphosphorylation/activation of SNF1
occurring in the absence of the chaperone |76].

8.3. Salt sensitivity — Ssb may affect membrane protein biogenesis

The AssblAssb2 strain suffers from sensitivity to a set of specific
supplements and drugs. One of the strains characteristics is
hypersensitivity to increased salt concentrations, including NaCl,
LiCl, and guanidinium chloride [74,75]. Salt sensitivity does not simply
reflect a general problem in respect to increased osmolarity, because
the AssblAssh2 strain is not sensitive towards the uncharged, but
osmotically active, supplement sorbitol |75]. Rather, the defect seems
to be due to an enhanced influx of all kinds of cations. Enhanced cation
uptake is a characteristic of mutants with an increased negative
potential across the plasma membrane. A well studied example of
such a mutant is Atrk1Atrk2, which lacks the plasma membrane K* -
transporters Trk1 and Trk2 [75,94]. Based on phenotypic similarities it
was suggested that Ssb might, directly or indirectly, affect the
biogenesis of membrane proteins such as Trk1 or Trk2, because
proper co-translational insertion of the transporters into the mem-
brane of the ER is hampered in the AssblAssh2 strain [75]. Such an
effect of Ssb on membrane protein biogenesis, however, does not
seem to be general because for example ABC transporter function is
normal in a Assh1Assb2 strain [74].

8.4, Sensitivity to translational inhibitors — Ssb affects transiational fidelity

The AssblAssh2 strain is hypersensitive also to a number of
translational inhibitors. Most striking is the exceptionally high
sensitivity of the AssblAssb2 strain towards the aminoglycoside
class of antibiotics as for example paromomycin, hygromycin B, and
G418 [54,58,75]. Aminoglycosides bind close to the decoding center of
the small ribosomal subunit and affect translational fidelity [95], Via
this mechanism aminoglycosides can induce phenotypic suppression
of nonsense as well as missense mutations [96]. A number of yeast
mutants in proteins or rRNA localized close to the decoding center
display enhanced sensitivity to paromomycin [97-101]. In the case of
AsshblAssb2 at least two, possibly additive mechanisms, seem to
contribute to the hypersensitivity against aminoglycosides.

First, hypersensitivity towards aminoglycosides is a consequence of
an increased intracellular accumulation of the drugs, which are cationic
in nature [75]. As discussed above this could be connected to a role of Ssb
in the biogenesis of membrane transporters required for ion homeo-
stasis | 75). Alternatively, defects in cation homeostasis might be related
to hyperphosphorylation of Snfl in the Assb1Assb2 strain. Specifically
the non-phosphorylated form of Snfl is required for mediating
tolerance to toxic cations and activation of potassium transport [102].
Also Gle7 mutations, which affect the phosphorylation status of Snfl,
lead to sensitivity against cations as well as aminoglycosices [103].

Second, there is evidence for a direct connection between
aminoglycoside sensitivity and a rale of Ssb in translational fidelity.
In vivo read through of a reporter construct containing an in frame stop
codon is enhanced in a Assb1Assb2 strain even in the absence of error
inducing drugs. Thus, Assb1Assb2 causes a defect in translational
fidelity independent of its defect in cation uptake [58]. Support for a
direct effect of Ssb on translational fidelity comes from several
additional observations, In an unbiased screen 558 was identified asan
efficient multicopy enhancer of termination efficiency [104]. In the
Assb1Assb2 strain inhibition of —1 programmed ribosomal frame
shifting and defects in Killer virus maintenance were observed |105].
Also, the AssblAsshb2 mutation leads to the accumulation of flock
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house virus RNA expressed in yeast and it was hypothesized that the
effect might be related to Ssb's role in maintaining translational
fidelity [106]. Finally, the fidelity of translation termination in vitro is
significantly lower when Ssb is absent from the translation reaction.
When aminoglycosides are added to the in vitro reaction the error rate
in the absence of Ssb increases dramatically, while the error rate in the
presence of Ssb is much less affected [58). How Ssb, localizing far from
the decoding center at the exit of the ribosomal tunnel can affect the
fidelity of translation is currently not understood. However, the
phenomenon is not without precedence and other mutations within
ribosomal proteins of the large subunit localized at the tunnel exit
have similar consequences on translational fidelity. For example,
ribosomal proteins Rpl39 and Rpl31, which localize close to the tunnel
exit, affect decoding [21,107,108).

9. Impact on [PSI* | — Ssb prevents prion propagation

The yeast prion |PSI" | is a sell-propagating, prion-like form of the
translation termination factor subunit Sup35 (eRF3). Formation of
Sup35 prions reduces the concentration of soluble Sup35. As a
consequence yeast strains which are [PSI"| display increased stop
codon read through (for recent reviews on the topic compare [109-
113]). The chaperones Hsp104, Hsp90, various Hsp70s and Hsp40s
play crucial roles in the maintenance and propagation of |PSI"|.
Hsp104 is the most important chaperone in the context of [PSI' |
formation and propagation. Both, its overexpression and absence
result in the loss of [PSI*| [114]. Ssb and Ssa influence the action of
Hsp104, however, with opposite effects. Overexpression of Ssal
protects | PSI" | from curing by Hsp104 [115], while Ssb has a negative
effect on [PSI" | propagation [58,77,116,117]. These opposing in vivo
effects are mediated by the Ssa and Ssb substrate-binding domains
|61). Evidence suggests that Ssb either stimulates refolding of Sup35
into its native conformation or targets misfolded Sup35 intermediates
for degradation [61]. Consistent with such a role, direct interaction
between Ssb and Sup35 was reported [61,118]. Ssb, in concert with its
co-chaperone RAC, inhibits the spontaneous formation of prion
fibrilles in vitro [31). The exact role of Ssb in [PSI" | propagation still
has to be clarified. The process is complex and in vivo studies are
impeded because the well established detection methods for the [PSI
"] status of a cell involves determination of stop codon read through
efficiency. As outlined above, Ssb affects read through also in a [PSI™ |
independent manner [58,74,104/.

10. Ssb in cellular protein turnover

Incorrectly folded proteins need to be eliminated since exposure of
hydrophobic patches, which are usually buried inside native proteins
and protein complexes, leads to aggregation in the aqueous cellular
environment. The consequences for the cell are detrimental and thus
cytosolic aggregates are normally disposed by the proteasome system
|119]. The coordination between protein synthesis and protein
degradation is only incompletely understood, however, chaperones
are predestined to play an important role.

Early data suggested that in vive a large fraction of newly
synthesized polypeptides are degraded by the proteasome |120].
Because one of Ssb's characteristics is the interaction with nascent
polypeptides as well as with the ribosome it would be ideally suited
to act at this gateway between co-translational folding and
degradation. However, protein synthesis is expensive from an
energetic point of view and a futile cycle of synthesis and degradation
seems sumptuary. Indeed, it was later shown in a well controlled set
of experiments that the earlier results suggesting turnover of a large
fraction of newly synthesized polypeptides were due to an experi-
mental artifact [121]. However, specific biologically relevant situa-
tions can produce nascent polypeptides, which need to be delivered
co-translationally for degradation. This is the case, for example, if an

mRNA lacks an in frame stop codon and translation proceeds into the
poly(A) sequence, or if read through of a stop codon occurs. As a
consequence a stretch of consecutive lysines will be added to the C-
terminus of the protein. The positively charged lysine stretches can
result in transient arrest of translation and stalling of ribosomes
|122]. Interestingly, it was found that consecutive lysine residues
cause degradation of nascent polypeptides by the proteasome
[123,124]. Based on that it was proposed that proteins C-terminally
tagged with poly-lysine stretches cause translational repression of
the encoding mRNA [123). In the light of these observations the
question arises if Ssb might be involved in these processes at the
interface between translation and degradation. Direct evidence is not
available, however, circumstantial evidence points into this direction.
Overexpression of Ssbl, however not the overexpression of Ssal,
efficiently suppresses the temperature sensitive growth defect caused
by a mutation in a proteasome subunit |125]. Moreover, the
Assh1Assb2 strain is sensitive towards the proline analog, azetidine-
2-carboxylic acid (AZC) [26,35]. AZC causes reduced thermal stability
or misfolding of the proteins into which it is incorporated
competitively with proline |[126]). Many yeast mutants sensitive to
AZC are related to the ubiquitin proteasome system. Among them
mutations in the E3 ubiquitin ligase RSP5 [127), the Aubc4Aubc5 E2
ubiquitin ligase double mutant [128], and a large class of cyclohex-
imide resistant mutants originally termed the crl mutants [129),
which were later found to localize within genes encoding subunits of
the proteasome [130]. AssblAssb2 and the crl mutants display a
budding arrest defect when they enter stationary phase [76,129].
Similar to the AssblAssb2 mutant, the crl mutants are sensitive
towards aminoglycosides as well as high salt concentrations [129].
However, it should be noted that only the crl mutations but not
Assb1Assb2 causes temperature sensitivity [3,54,129]. In respect to
AZC sensitivity another genetic interaction with the AssblAssh2
mutant was recently reported. BUD27/URI1 encodes an unconven-
tional member of the prefoldin family, which participates in the
regulation of the nutrient-sensitive TOR-dependent transcriptional
programs |131]. Unexpectedly, the AZC sensitivity of a AssblAssh2
strain was slightly reduced in a Assb1Assb2Auril strain [26]. Because
to date mechanistic details on a role of Ssb in degradation are missing,
it is possible that the observed genetic interactions as well as drug
effects are more indirectly linked to Ssb. For example, in the
Assb1Assb2 strain several amino acid permeases are severely
deregulated on the transcriptional level [76] and the uptake of the
non-natural amino acid analog AZC might be enhanced. In this
context it would be interesting to compare the AZC incorporation into
cellular proteins in AssblAssb2 and wild type strains. In general,
surprisingly little is known about AZC incorporation into proteins in
vivo. Studies on the effect of AZC on protein conformation and
stability have been performed mainly with the collagen helix, which
is a special case because of its structure and high proline content.
Computational analysis revealed that even in collagen a high level of
substitution of prolines with AZC is required to cause effects [132],

Finally, it should be mentioned that effects of Ssb on protein
degradation have been directly tested in a number of studies and the
outcome suggests that the chaperone is not a general compaonent of
the protein degradation machinery. Ssb is dispensable for the
degradation of ER-import defective mutants of carboxypeptidase
yscY, whereas Hsp90 and Ssa, and Ydj1p are required [133]. Ssb is
dispensable for the retro-translocation and elimination of mutated
versions of prepro-ce-factor via ER mediated degradation (ERAD)
[134). While Ssa together with Ssel and Hsp90 promotes the
degradation of the von Hippel-Lindau (VHL) tumor-suppressor, the
level of VHL tumor-suppressor is not affected by Ssb [135].
Apolipoprotein B (apoB) is targeted for degradation co-translationally
when translocation into the ER comes to halt [136]. Ssal and Ssel,
each influence the turnover of apoB in a distinct manner, however,
Ssb1 does not [137,138).
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11. Open questions and future prospects

Assh1Assh2 strains suffer from a combination of different growth
defects which allude to possible cellular roles of the chaperone. The
situation is complicated as Ssb is expected to be involved in various
cellular processes. Multiple malfunctions may contribute to what is
finally assumed to be a specific phenotype. It thus does not come as a
surprise that some growth defects of the AsshlAssb2 strain can be
explained by different models. To date, none of the defects observed in
the Assh1Assb2 strain can be stringently explained on a molecular level.

The most surprising conclusion from the literature survey is how
little experimental evidence indicates a role of Ssb in de novo folding.
Insufficient data available on an active role of Ssb in folding has more
recently led to models which focus on a function of Ssb in transfer of
nascent peptides from the ribosome to downstream folding chaper-
ones |65,66. A provoking hypothesis is that Ssb on the ribosome is not
involved in protein folding at all (Fig. 2), but required for other,
currently for the most part enigmatic processes. Positive proof of a
model in which Ssb is a component of the cellular folding machinery
will involve the identification of its in vivo substrates and the
reconstitution of an in vitro system in which Ssb is required for the
folding of a nascent model protein. Such evidence has firmly
established, for example, that Ssa is a central player of the cytosolic
protein folding machinery [30,139-141]. It will also be of eminent
importance to further define the role of Ssb in maintaining cellular
energy homeostasis. If Ssb is involved in regulating the interaction
between components of the SNF1 signaling pathway, such a function
may also regulate dynamic interactions within other functional
protein networks.
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