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SUMMARY

Nephronophthisis-related ciliopathies (NPHP-RC)
are degenerative recessive diseases that affect
kidney, retina, and brain. Genetic defects in NPHP
gene products that localize to cilia and centrosomes
defined them as "ciliopathies.’’ However, disease
mechanisms remain poorly understood. Here, we
identify by whole-exome resequencing, mutations
of MRE11, ZNF423, and CEP164 as causing NPHP-
RC. All three genes function within the DNA damage
response (DDR) pathway. We demonstrate that,
upon induced DNA damage, the NPHP-RC proteins
ZNF423, CEP164, and NPHP10 colocalize to nuclear
foci positive for TIP60, known to activate ATM at
sites of DNA damage. We show that knockdown of
CEP164 or ZNF423 causes sensitivity to DNA dam-
aging agents and that cep164 knockdown in zebra-
fish results in dysregulated DDR and an NPHP-RC
phenotype. Our findings link degenerative diseases
of the kidney and retina, disorders of increasing prev-
alence, to mechanisms of DDR.
INTRODUCTION

Nephronophthisis (NPHP) is a recessive cystic kidney disease

that represents the most frequent genetic cause of end-stage

kidney disease in the first three decades of life. NPHP-related cil-

iopathies (NPHP-RC) are single-gene recessive disorders that

affect kidney, retina, brain, and liver by prenatal-onset dysplasia

or by organ degeneration and fibrosis in early adulthood. Identi-

fication of recessive mutations in more than ten different genes

(NPHP1-NPHP13) revealed that their gene products share local-

ization at the primary cilia-centrosomes complex and mitotic

spindle poles in a cell-cycle-dependent manner, characterizing

them as retinal-renal ‘‘ciliopathies’’ (Ansley et al., 2003; Hilde-

brandt et al., 2011). Multiple signaling pathways downstream

of cilia have been implicated in the disease mechanisms of

NPHP-RC, including Wnt signaling (Germino, 2005; Simons

et al., 2005) and Shh signaling (Huangfu and Anderson, 2005;

Huangfu et al., 2003). However, despite convergence of cilio-

pathy pathogenesis at cilia and centrosomes it remains largely

unknown what signaling pathways downstream of cilia and
534 Cell 150, 533–548, August 3, 2012 ª2012 Elsevier Inc.
centrosome function operate in the disease mechanisms that

generate the NPHP-RC phenotypes.

Centrosomal proteins have been recently implicated in DNA

damage response (DDR). Both pericentrin (PCNT), a core cen-

trosomal protein (Doxsey et al., 1994), as well as CEP152,

encoding a centrosomal protein required for centriolar duplica-

tion (Blachon et al., 2008), are defective in Seckel syndrome,

an autosomal-recessive disorder characterized by dwarfism,

microcephaly, and mental retardation (Griffith et al., 2008; Kalay

et al., 2011; Rauch et al., 2008). PCNT- andCEP152mutant cells

are also defective in ATR-dependent DDR signaling, consistent

with the fact that the first mutation identified in Seckel syndrome

was in ataxia-telangiectasia mutated and RAD3-related (ATR),

a key phosphoinositide 3-kinase-related protein kinase involved

in DDR signaling (O’Driscoll et al., 2003), but the mechanism of

the signaling defect is not fully understood.

The known NPHP genes explain less than 50% of all cases

with NPHP-RC, and many of the single-gene causes of NPHP-

RC are still unknown (Otto et al., 2011). The finding that some

of the recently identified genetic causes of NPHP-RC are ex-

ceedingly rare (Attanasio et al., 2007) necessitates the ability to

identify novel single-gene causes of NPHP-RC in single affected

families. To achieve this goal, we developed a strategy that

combines homozygosity mapping (HM) with whole-exome rese-

quencing (WER) (Otto et al., 2010). Because this approach allows

identification of multiple different causes of NPHP-RC within

a short time frame, it has the potential of delineating pathogenic

pathways.

Using this approach, we identify here mutations in three

NPHP-RC genes,MRE11, ZNF423, andCEP164, which together

suggest involvement of a DDR signaling pathway in NPHP-RC

pathogenesis.

RESULTS

Whole-Exome Resequencing Accelerates Discovery of
NPHP-RC Genes
Identification of monogenic causes of ciliopathies is limited by

their rarity (Attanasio et al., 2007), necessitatingmethods to iden-

tify ciliopathy-causing genes in single families by using WER.

However, WER typically yields hundreds of variants from normal

reference sequence (Ng et al., 2009), whereas only a single-gene

mutation will represent the disease cause. To overcome this limi-

tation, we here combinedWERwith HM (Hildebrandt et al., 2009)

in sib pairs affected with NPHP-RC and performed functional

analysis of the identified genes (Otto et al., 2010).

mailto:fhilde@umich.edu
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Figure 1. Identification of Recessive Mutations in MRE11, ZNF423, and CEP164 in NPHP-RC Using HM and WER

Data regarding HMandmutations are shown for family A3471withMRE11mutation (A and B), family F874with ZNF423mutation (C and D), and family KKESH001

with CEP164 mutation (E and F). (A, C, and E) Nonparametric lod scores (NPL) are plotted across the human genome in three families (A3471, F874, and

KKESH001) with NPHP-RC (see also Table 1). The x axis shows SNP positions on human chromosomes concatenated from p-ter (left) to q-ter (right). Genetic

distance is given in cM. Maximum NPL peaks (Hildebrandt et al., 2009) (red circles) indicate candidate regions of homozygosity by descent. The genes MRE11,

ZNF423, and CEP164 are positioned (arrow heads) within one of the maximumNPL peaks. (B, D, and F) Homozygous mutations detected in families with NPHP-

RC. Family number (underlined), mutation (arrowheads), and predicted translational changes (in parenthesis) are indicated (see also Table 1). Sequence traces

are shown for mutations above normal controls. (For additional mutations in other families see also Table 1 and Figure S2).
HM yielded positional candidate regions of homozygosity by

descent (Hildebrandt et al., 2009) in families A3471 (two regions),

F874 (nine regions), and KKESH001-7 (14 regions) (Figure 1),

who had one or more features of NPHP-RC, including NPHP,
retinal degeneration, liver fibrosis, or cerebellar degeneration/

hypoplasia (Table 1). We then performed WER in one affected

individual of each of the three NPHP-RC families (Ng et al.,

2009; Otto et al., 2010). Remarkably, each of three NPHP-RC
Cell 150, 533–548, August 3, 2012 ª2012 Elsevier Inc. 535



Table 1. Mutations of MRE11, ZNF423 and CEP164 in families with NPHP-RC

Family Individuals

Ethnic

Origin

Nucleotide

Alterationa,b

(Hg19 Position)

Deduced

Protein

Change

Exon

(State)

Continuous Amino

Acid Sequence

Conservation

Parental

Consanguinity

Kidney

(Age at ESKF) Eye (Age at RD) Other (at Age)

MRE11

A3471 -21 and -22 Pakistani c.1897C>T

(Chr11: 94,170,372)

p.R633X 16 (hom) N/A Yes No renal failure Normal -21: -21: CVA (MRI), ataxia,

dysarthria, myoclonus;

-22: CVA (MRI), ataxia

ZNF423

F874 -21 and -22 Turkey c.2738C>T (Chr16:

49,670,325)

p.P913L 5 (hom) (D. rerio) Yes NPHP ND CVH Infantile NPHP

Situs inversus

A106 -21 and -22 Iceland c.1518delC (Chr16:

49,671,545)

p.P506fsX43 5 (het) (X. tropicalis) No PKD LCA CVH (Joubert)

A111 -21 ? c.3829C>T (Chr16:

49,525,212)

p.H1277Y 9 (het) (D. rerio) ? PKD RD CVH, NPHP, perinatal

breathing abnormality,

tongue tumor

CEP164

F319 -21 and -22 Turkey c.32A>C (Chr11:

117,209,334)

p.Q11P 3 (hom) (Ch. Reinhardtii) Yes NPHP, no Bx;

-21: (8 years);

-22: (8 years)

-21: RD (11yr,

not yet blind); -22:

no RP at 8 yrs

-21: obesity? no

LF; -22: obesity? LF?

F59 -21, -22, -23 USA

(Europe)

c.277C>T, (Chr11:

117,222,588)

c.1573C>T (Chr11:

117,252,580)

p.R93W,

p.Q525X

5 (het),

13 (het)

(Ch. Reinhardtii),

N/A

No NPHP, no Bx;

-21: (9 years);

-22: (8 years);

-23: normal

-21: RD (6 years);

-22: LCA (legally

blind at 5 months);

-23: (2 years)

-22: NY (birth),

mild AI; -23: seizuresc,

substantial DD, mild ID

NPH505 ND c.1726C>T (Chr11:

117,257,920)

p.R576X 15 (hom) N/A Yes NPHP, Bx (8 yr) RD and flat ERG

(not blind)

CVH, FD, bilateral PD,

bronchiectasis (1 mo),

abnormal LFT, obesity

KKESH001-7 Saudi c.4383A>G (Chr11:

117,282,884)

p.X1460W

extX57

33 (hom) N/A Yes normal (RD) LCA, flat

ERG (blind <2 yr)

N/A

AI, aortic insufficiency; Bx, Kidney biopsy; CVH, cerebeller vermis hypoplasia; DD, developmental delay; ERG, electroretinogram; ESKF, end-stage kidney failure; FD, facial dysmorphism; het,

heterozygous; hom, homozygous; ID, intellectual disability; LCA, Leber congenital amaurosis; LF, liver fibrosis; LFT, liver function tests; MRI, magnetic resonance imaging; N/A, not applicable;

ND, no data; NPHP, nephronophthisis; NPHP-RC, nephronophthisis-related ciliopathies; NY, nystagmus; PD, polydactyly; RD, retinal degeneration; SS, short stature.
aAll mutations were absent from >270 healthy control individuals and from the ESP Exome Variant Server data base, except theCEP164 variant p.R576X (allele frequency in European Americans

1/7,019).
bcDNA mutation numbering is based on human reference sequences NM_014956.4 forMRE11, NM_015069.2 for ZNF423, and NP_055771 for CEP164, where +1 corresponds to the A of ATG

start translation codon.
cSeizures were intractable, generalized and/or partial complex.
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genes consecutively identified by this approach, MRE11,

ZNF423, and CEP164, suggested a functional connection to

the DDR pathway (Figure 1; Table 1).

A Mutation of MRE11 in Progressive Cerebellar
Degeneration Suggests Link to DDR
In family A3471, two siblings had cerebellar vermis hypoplasia

(CVH), a central feature of NPHP-RC (Table 1). Homozygosity

mapping yielded two candidate loci (Figure 1A). WER detected

a homozygous truncation mutation (p.R633X) of MRE11 (Fig-

ure 1B; Table 1) previously described for CVH in another Pakis-

tani family (Stewart et al., 1999), suggesting a founder effect for

this allele. MRE11 is an essential component of the ATM-Chk2

pathway of DDR (Figure S1 available online), where it recruits

ATM (ataxia telangiectasia-mutated) to sites of DNA double-

strand breaks (Figure S1A). Rediscovery of thisMRE11mutation

in family A3471 thus generated an unexpected link between

NPHP-RC phenotype and the ATM pathway of DDR signaling

(Figure S1A).

Patients with the NPHP-RC Joubert Syndrome Have
Defects in ZNF423
Another link of NPHP-RC to the ATM pathway of DDR signaling

emerged from HM and WER in two siblings (F874) with infantile

onset NPHP, CVH, and situs inversus (Table 1). SNP mapping

yielded nine candidate regions of homozygosity by descent (Fig-

ure 1C). We identified in both affected individuals a homozy-

gous missense mutation (p.P913L; conserved in vertebrates) of

ZNF423 (Figure 1D). In addition, when examining 96 additional

Joubert syndrome (JS) subjects, we detected two heterozy-

gous-only mutations of ZNF423: p.P506fsX43 in family A106

and p.H1277Y in individual A111-21 (Table 1). Mutations of the

mouse ortholog Zfp423 cause reduced proliferation and ab-

normal development of midline neural progenitors resulting in a

loss of the cerebellar vermis (Alcaraz et al., 2006; Cheng et al.,

2007) similar to that seen in JS patients with CVH.

ZNF423 encodes a protein with 30 zinc fingers (Figure 2A).

Mouse models display phenotypic variability that is subject

to modifier genes, environment, and stochastic effects (Alcaraz

et al., 2011; Alcaraz et al., 2006), consistent with the variable

presentations of NPHP-RC patients. The homozygous mutation

p.P913L, located between zinc fingers 21 and 22 (Figure 2A),

most likely exerts recessive loss-of-function, analogous to the

Zfp423 mouse models.

We next examined whether the heterozygous-only mutations

(Table 1) lead to loss of function via a dominant mechanism,

using a proliferation assay in P19 cells (Figures 2B–2D). Muta-

tions were engineered into a FLAG-tagged ZNF423 cDNA and

assayed by a S-phase index, defined as the proportion of trans-

fected cells that incorporate BrdU in 1 hr, 48 hr after transfection.

Simple loss-of-function alleles should not interfere with endoge-

nous Zfp423 activity in this assay. Indeed, overexpression of

either wild-type or the homozygous p.P913L allele had no effect

(Figure 2D). However, transfection with either the p.P506fsX43

frame-shifting allele, which removes the zinc fingers required

for SMAD (similar to mothers against decapentaplegic) and

EBF (early B cell factor) interactions, and the H1277Y substitu-

tion allele, which destroys the terminal zinc finger required for
EBF interaction, reduced the mitotic index to little more than

half that of cells transfected with green fluorescent protein

(GFP) control vector or other alleles of ZNF423 (Figures 2B–

2D). A dominant mechanism is plausible for the two heterozy-

gous mutations, as each is predicted to interfere selectively

with a subset of interaction domains (Figure 2A). Neither subject

had siblings, and DNA from parents was not available to deter-

mine whether the mutations occurred de novo.

We detected five additional putative mutations in highly con-

served (including histidine knuckle) residues of ZNF423 among

JS families (Table S1). Although these mutations have not been

confirmed functionally, the high incidence of predicted delete-

rious mutations found in patients but absent from 270 healthy

control individuals, dbSNP, and 1000 Genomes Project data

further support identification of ZNF423 as a causal gene in

NPHP-RC and JS.

ZNF423/OAZ was recently shown to interact with the DNA

ds-damage sensor PARP1 (poly-ADP ribosyl polymerase 1) (Ku

et al., 2003), which recruits MRE11 and ATM to sites of DNA

damage (Figure S1A). This indirectly linked ZNF423 to the ATM

pathway of DNA damage signaling (Figure S1A). We therefore

tested whether ZNF423 mutations affect interaction between

ZNF423 and PARP1. Coimmunoprecipitation verified the associ-

ation of ZNF423 and PARP1 in reciprocal assays (Figure 2E).

More importantly, the truncating mutation P506fsX43, which

we detected in a JS patient (Table 1), abrogates this interaction

(Figure 2E), whereas H1277Y inhibits multimerization of ZNF423

(Figure 2E). In addition, depletion of ZNF423 mRNA caused

sensitivity to DNA damaging agents (see below).

Furthermore, we identified ZNF423 as a direct interaction

partner of CEP290/NPHP6, which ismutated in NPHP-RC (Sayer

et al., 2006; Valente et al., 2006). In a yeast two-hybrid screen

of human fetal brain library with a CEP290 (JAS2; amino acids

1917–2479) ‘‘bait’’ we found three in-frame ‘‘prey’’ sequences

corresponding toZNF423 (amino acids 178-406). This interaction

was confirmed (Figures 2F and 2G). CEP290/NPHP6 is known to

interact with the NPHP-RC protein NPHP5 (Schäfer et al., 2008)

and localizes to the ciliary transition zone (Sang et al., 2011).

Mutations of CEP164 Cause NPHP-RC
We obtained 14 candidate regions by HM in a Saudi family

(KKESH001) of first-cousin parents with a child who had LCA

(which can be allelic with NPHP-RC) with nystagmus, hyperopic

discs, vascular attenuation, diffuse retinal pigment epithelium

atrophy, and nonrecordable ERG (Table 1) (Figure 1E). Using

WER we detected a homozygous point mutation in CEP164

(centrosomal protein 164 kDa) that abolished the termination

codon, adding 57 amino acid residues to the open reading frame

(p.X1460WextX57) (Figure 1F, Table 1). Themutation was absent

from 96 Saudi healthy controls and from 224 North American

LCA patients who lack mutations in other known LCA genes.

We performed exon-PCR and Sanger sequencing of all 31

coding exons for one affected individual in each of 856 different

NPHP-RC families (see Extended Experimental Procedures). We

detected bothmutatedCEP164 alleles in each of three additional

families with NPHP-RC (Table 1; Figure S2). We thereby identi-

fied recessive mutations of CEP164 as an additional cause of

NPHP-RC. Because of the significant overlap of phenotypic
Cell 150, 533–548, August 3, 2012 ª2012 Elsevier Inc. 537



A

B C D

E
F

G

Figure 2. Two ZNF423 Mutations Have

Dominant Negative Characteristics, ZNF423

Mutation Abrogates Interaction with PARP1,

and ZNF423 Directly Interacts with the

NPHP-RC Protein CEP290/NPHP6

(A) Amino acid residues altered by NPHP-RC

mutations in ZNF423 are drawn in relation to func-

tional annotation of its 30 Zn-fingers.

(B–D) S-phase index assay (fraction of transfected

cells incorporating BrdU) for P19 cells transfected

with either wild-type or mutant ZNF423. (B)

Representative field of cells transfected with wild-

type ZNF423 shows high frequency of BrdU+

FLAG+ double-positive cells. (C) ZNF423–H1277Y

transfected cells exhibits fewer FLAG–positive cells

and a lower proportion that are double positive. (D)

S-phase index measured in duplicate transfections

for each of three DNA preparations per construct. A

GFP construct was used as a nonspecific control.

Constructs with P506fsX43 and H1277Y mutations

detected in NPHP-RC show significantly reduced

S-phase index (p < 10�5, ANOVA with post-hoc

Tukey honestly significant difference [HSD]).

(E) ZNF423 interacts with PARP1. P19 cells were

cotransfected with expression constructs for N

terminally FLAG-tagged human full-length ZNF423

and V5-tagged human full length PARP1. Com-

parable amounts of both proteinswere present in all

lysates (lower panels). Proteins were precipitated,

using anti-V5 (upper panels) and anti-FLAG anti-

bodies (middle panels), respectively. Reciprocal

coIP demonstrates interaction between ZNF423

and PARP1. Note that the ZFN423 mutation

P506fsX43 abrogates this interaction (arrowhead)

and that mutation H1277Y diminishes ZNF423

multimerization (arrow).

(F–G) ZNF423 directly interacts with CEP290/

NPHP6. (F) A human fetal brain yeast two-hybrid

library screened with human CEP290/NPHP6

(JAS2; aa 1917–2479) fused to the DNA-binding

domain of GAL4 (pDEST32) identified ZNF423

as a direct interaction partner of CEP290/NPHP6.

The interaction was confirmed using direct yeast

two-hybrid assay where 1 and 2 represent colony

growth of CEP290 bait with ZNF423 prey. a–e are

controls for colony growth on medium deficient

in histidine, leucine and tryptophan. (G) HEK293T

were cotransfected with human V5-tagged partial

human V5-CEP290 clone and GFP-tagged full-

length human ZNF423 clone. Immunoprecipitation

with anti-V5 (lane 2), but not control IgG (lane 3)

precipitated both the V5-tagged CEP290 (arrow-

head) as well as GFP-tagged ZNF423 (arrow).
features with other forms of NPHP-RC we introduce the alias

‘‘NPHP14’’ for ZNF423 and ‘‘NPHP15’’ for the CEP164 protein.

Although the number of families with CEP164 mutation is

small, our findings support a gradient of genotype-phenotype

correlations characteristic of NPHP-RC (Table 1), in which null

mutations cause the severe dysplastic phenotypes of Meckel

syndrome and JS, whereas hypomorphic alleles cause the

milder degenerative phenotypes of NPHP and SLSN (Hilde-

brandt et al., 2011). CEP164 is transcribed into three common

isoforms (Figures S2A–S2C) and is part of the photoreceptor

sensory cilium proteome (Liu et al., 2007). To study subcellular
538 Cell 150, 533–548, August 3, 2012 ª2012 Elsevier Inc.
localization of the CEP164 protein, we utilized antibodies against

human CEP164 for immunoblotting and immunofluorescence

(Figure S3).

Mutation of CEP164 Interferes with Ciliogenesis
By confocal microscopy of GFP-labeled CEP164 protein with

other labels, we show that CEP164 colocalizes in hTERT-

RPE cells with the mother centriole, with the mitotic spindle

poles, and with the abscission structure in a cell-cycle-depen-

dent way (Figure S4), a feature characteristic of proteins in-

volved in single-gene ciliopathies (Otto et al., 2010; Graser
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Figure 3. Expression of Mutant CEP164 in

Renal Epithelial Cells Abrogates Localiza-

tion to Centrosomes

(A) Immunofluorescence using a-SDCCAG8/

NPHP10-CG antibody in MDCK cells, labels

both centrioles, whereas a-CEP164-ENR antibody

demonstrates CEP164 staining at the mother

centriole only.

(B) Inducible overexpression of N terminally

GFP-tagged human full-length CEP164 isoform

1 (NGFP-CEP164-WT) in IMCD3 cells demon-

strates, in addition to a cytoplasmic expression

pattern, localization at one of the two centrioles

(inset, arrow heads) consistent with selective

localization to the mother centriole (Graser et al.,

2007). Both centrioles are stained with an anti-g-

tubulin antibody.

(C) In contrast, the centrosomal signal is abro-

gated upon overexpression of an N terminally

GFP-tagged truncated CEP164 construct repre-

senting the mutation p.Q525X.

(D) The number of centrosomes positive for

CEP164 is reduced upon overexpression of C

terminally GFP-tagged human full-length CEP164

isoform 1 (CGFP-hCEP164-WT), which mimics

the mutation p.X1460WextX57 that causes a read-

through of the stop-codon X1460, adding 57

aberrant amino acid residues to the C terminus of

CEP164. Similar data were obtained upon CEP164

expression in hTERT-RPE cells (see also Figures

S3B–S3D). IMCD3 cells were stably transfected

with the respective CEP164 constructs in a retro-

viral vector for doxycyclin-inducible expression

(pRetroX-Tight-Pur). Scale bars, 10 mm.

(E–H) Knockdown of Cep164 disrupts ciliary

frequency. (E) Depletion of Cep164 by siRNA (F)

causes a ciliary defect in 3D spheroid growth

assays. IMCD3 cells transfected with either siCtrl or

siCep164 were grown to spheroids in 72 hr and

immunostained for acetylated tubulin (red). DAPI

stains nuclei (blue). Doxycycline induced stably

transfectedNGFP-hCEP164-WT (green). Spacebar

represents 5 mm. (G) Nuclei and cilia were scored

within a single spheroid to generate ciliary frequen-

cies. siCep164 transfected cells manifest lower cilia

frequencies (33%) compared to control transfected

IMCD3 cells (49%). Induction of NGFP-hCEP164-

WT in siCep164 transfected cells rescues this ciliary

defect (57%). 50 spheroids per condition were

analyzed in three independent experiments. Error

bars represent SEM, n = 3, *p value < 0.0002. (H)

Ciliary frequency is not rescued bymutant CEP164.

Ciliary frequencies are reduced in siCep164 transfected IMCD3 cells (39%) compared to control siCtrl transfected IMCD3 cells (54%). Induction of NGFP-hCEP164-

Q525X does not rescue this ciliary defect (34%). 50 spheroids per condition were analyzed. Error bars represent SEM, ***p value < 0.0002.

See also Figure S3.
et al., 2007) and that this colocalization is abrogated by

mutations (Figure 3, Figures S3C–S3F). We thus demonstrated

lack of centrosomal localization for the truncating mutation

p.Q525X and for an equivalent of the p.X1460WextX57

mutation.

Loss of function of several genes that cause nephronophthisis

in NPHP-RC cause disruption of 3D architecture of renal epithe-

lial cell culture (Otto et al., 2010; Sang et al., 2011). To evaluate

CEP164 by this criterion, we transfected murine kidney IMCD3
cells with siRNA oligonucleotides against murine Cep164, or

random sequences (Ctrl) in 3D spheroid growth assays. Cells

transfected with siCep164 developed spheroids with overall

normal architecture and size, but with markedly reduced

frequency of cilia (Figures 3E–3H). We conclude that Cep164

affects ciliogenesis or maintenance but that the overall architec-

ture of renal 3D growths is not as grossly affected as we have

previously seen for knockdown of other NPHP-RC genes

(Sang et al., 2011).
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NPHP-RC Proteins Colocalize with the DDR Protein
TIP60 to Nuclear Foci
A noncentrosomal localization for CEP164 was described by

demonstrating its translocation to nuclear foci in response to

DNA damage (Pan and Lee, 2009; Sivasubramaniam et al.,

2008). CEP164 plays a role in DDR signaling where it interacts

with the DDR protein ATRIP (Figure S2C), is activated by the

DDR proteins ATM and ATR, and is necessary for checkpoint-

1 (Chk1) activation. Abrogation of CEP164 function leads to

loss of G2/M cell-cycle checkpoint and aberrant nuclear divi-

sions (Sivasubramaniam et al., 2008).

Localization of SDCCAG8 (alias NPHP10) (Otto et al., 2010),

shows nuclear foci in hTERT-RPE cells in addition to its centro-

somal localization (Figures 4B–4C). Transient shRNA knock-

down confirmed specificity of the signal (Figures S4B–S4D).

SDCCAG8/NPHP10 did not colocalize with markers for PLM

bodies (Janderová-Rossmeislová et al., 2007) or CENP-C

(marking chromosomal centromeres) (Figures S5A and S5B). In

contrast, SDCCAG8/NPHP10 fully colocalized with SC35 in

hTERT-RPE cells (Figures 4A–4C). SC35, also known as

serine/arginine-rich splicing factor 2 (SRSF2), plays a role in

DDR by controlling cell fate decisions in response to DNA

damaging agents (Edmond et al., 2011; Reinhardt et al., 2011).

SC35 marks hubs of enhanced gene expression (Szczerbal

and Bridger, 2010), is phosphorylated by topoisomerase I (Elias

et al., 2003), and is required for genomic stability duringmamma-

lian organogenesis (Xiao et al., 2007). Moreover, ZNF423 also

fully colocalizes (Figure 4D), and CEP164 partially colocalizes

(Figure 4E) with SC35 in nuclear foci. Consequently, ZNF423

and CEP164 also colocalize with SDCCAG8/NPHP10 in SC35-

positive nuclear foci (Figures 4F and 4G).

SC35 functions within a TIP60 complex, in which TIP60 acety-

lates SC35 on lysine 52 (Figure S1B), modifying the role of SC35

in the promotion of apoptosis and inhibition of G2/M arrest (Ed-

mond et al., 2011), which is regulated by the checkpoint proteins

Chk1 and Chk2 (Figure S1D). Interestingly, the TIP60 protein, to-

gether with the heterotrimeric MRN complex (of which MRE11

is a component) constitutes the major activator of ATM within

the ATM pathway of DDR signaling (Ciccia and Elledge, 2010)

(Figure S1A). In hTERT-RPE cells the ATM activator TIP60 coloc-

alizes to nuclear foci with SC35/SRSF2 (Figure 4H) and partially

with the identified NPHP-RC protein CEP164 (Figure 4I). We

thus identify a group of NPHP-RC proteins and demonstrate

that they colocalize to nuclear foci with the DDR proteins TIP60

and SC35. These gene products include the identified NPHP-

RC proteins ZNF423 and CEP164 as well as SDCCAG8/

NPHP10. Interestingly, the protein OFD1, which is mutated in

the ciliopathy oral-facial-digital syndrome, is part of the TIP60

complex. We recently identified OFD1 as a direct interaction

partner of SDCCAG8/NPHP10 (Figure S1B) (Otto et al., 2010).

Cep164 Associates with DDR Proteins and Its Loss
Causes DDR Defects
Because one of the central mechanisms controlled by DDR

signaling is cell-cycle regulation through phosphorylation of

checkpoint-1 (Chk1) and checkpoint-2 (Chk2) proteins (Fig-

ure S1D), we tested whether Chk proteins are recruited to

SC35/SRSF2-positive nuclear foci. SC35 and p317-Chk1 coloc-
540 Cell 150, 533–548, August 3, 2012 ª2012 Elsevier Inc.
alize to nuclear foci in hTERT-RPE cells (Figure 4J). We then

tested whether localization of CEP164 to nuclear foci was induc-

ible by DNA damage. Following irradiation with 20–50 J/m2 of

UV light, CEP164-positive nuclear foci condensed to larger

size and colocalized with TIP60 and Chk1 to foci of similar size

(Figures 4K–4O). TIP60 and p317-Chk1 colocalized within these

foci (Figure 4P). We thus demonstrate that CEP164 translocates

in response to DNA damage to nuclear foci that contain the DDR

proteins TIP60 and Chk1.

Lagging chromosomes on anaphase spindles (‘‘anaphase

lag’’) are a hallmark of many mutations that affect mitotic check-

point integrity. We show that siCep164 knockdown in IMCD3

cells increased anaphase lag from 1% in siCtrl controls to 21%

in siCep164-treated cells (Figures 5A and 5B, p = 0.04). This

phenomenon was specific, since doxycycline-inducible expres-

sion of WT-CEP164 during Cep164 siRNA knockdown reduced

the incidence of anaphase lag to just 4% (Figure 5B). These

data indicate a requirement for Cep164 at the G2/M checkpoint.

The DDR pathway can be activated by the CDK inhibitor

roscovitine, which also reduces Chk1 expression (Maude and

Enders, 2005). Roscovitine reduces the development of kidney

cysts in the Nphp9 mouse model, Jck (Bukanov et al., 2006).

We therefore tested the influence of roscovitine (targeting

CDK2, 5, 7 and 9) on DDR activation in IMCD3 cells. Immunoflu-

orescence shows increased uniform distribution of gH2AX (acti-

vated H2AX phosphorylated at Ser139) in the nucleus of IMCD3

cells upon roscovitine treatment in irradiated cells, indicating

partial DDR activation (Figure 5C). Second, in cells treated with

roscovitine, UV irradiation caused enhanced gH2AX staining

with a prominent nuclear foci pattern, characteristic of strong

DDR activation (Figure 5D). Immunoblotting showed that rosco-

vitine decreased the amount of CEP164 present in both control

and UV-irradiated cells (Figures 5E and 5F). This was most likely

due to translocation of CEP164 into the nucleus upon roscovitine

treatment, as shown by subcellular fractionation (Figure 5F). As

expected, UV radiation increased phosphorylation of Chk1 at

Ser317 (p-Chk1) (Figure 5E), and roscovitine decreased Chk1

protein expression and abrogated UV-induced p-Chk1 in both

cytoplasm and nucleus (Figures 5G and 5H). These data indicate

that CDK inhibition by roscovitine causes nuclear translocation

of CEP164 and inhibits Chk1 activation. gH2AX activation by

roscovitine may restore cell-cycle control by Chk2 activation

instead (Maude and Enders, 2005).

Human Wild-Type CEP164 but Not Its NPHP-RC
Truncation Mutant Rescues IMCD3 Cell Proliferation
In clonally selected IMCD3 cells expressing wild-type human

CEP164 cDNA construct N-GFP-CEP164-WT under doxycy-

cline (Dox) control, depletion of endogenous mouse Cep164

retarded proliferation in comparison to either undepleted control

cells or undepleted cells that were Dox-induced to overexpress

N-GFP-CEP164-WT alone (Figure 5G). Cep164-depleted growth

was rescued by Dox-induced expression of human N-GFP-

CEP164-WT (Figure 5G). Cells expressing truncated cDNA

construct N-GFP-CEP164-Q525X, modeling the NPHP-RC mu-

tation in family F59, exhibited retarded growth, even when the

endogenous Cep164 was present (Figure 5H), consistent with

a dominant negative effect. Further depletion of the endogenous



Figure 4. Colocalization upon Immunofluorescence of the NPHP-RC Proteins SDCCAG8/NPHP10, ZNF423 and CEP164 to Nuclear Foci that

Are Positive for the DDR Signaling Proteins SC35, TIP60 and Chk1 in hTERT-RPE Cells

(A–G) Colocalization of NPHP-RC proteins with SC35 in nuclear foci. SDCCAG8/NPHP10 (A-C) and ZNF423 (D) fully colocalize to nuclear foci with SC35, and (E)

CEP164 partially colocalizes with SC35. SDCCAG8/ NPHP10 also colocalizes with the identified NPHP-RC proteins ZNF423 (F) and CEP164 (G).

(H–J) Colocalization of NPHP-RCproteins with the DDRprotein TIP60 andChk1 to nuclear foci. (H) TIP60 fully colocalizes with SC35. (I) TIP60 partially colocalizes

with CEP164. (J) Chk1 fully colocalizes with SC35/ SRSF2. DNA is stained in blue with DAPI. Scale bars, 5 mm.

(K–P) Colocalization of DDR andNPHP proteins upon induction of DDR byUV radiation in HeLa cells. (K) Following irradiation of HeLa cells with UV light at 20 J/m2

a strong immunofluorescence signal of an anti-gH2AX antibody indicates activation of DDR. (L–M) Upon irradiation with UV light, CEP164-positive nuclear foci

condense and colocalize with TIP60 foci of similar size. (N–O) In untreated cells (N) a pattern of broad CEP164 speckles, which are Chk1-negative and locate to

DAPI-negative domains, changes to a pattern of multiple smaller foci (O) that are double positive for both CEP164-N11 and Chk1. (P) p317-Chk1 fully colocalizes

with TIP60 to nuclear foci and to the centrosome (arrowhead).

See also Figures S4, S5A, and S5B.
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Figure 5. Knockdown of Cep164 Causes Anaphase Lag and Retarded Cell Growth

(A and B) Knockdown ofCEP164 causes anaphase lag. siCep164 knockdown in IMCD3 cells increased anaphase lag incidence from 1% after siCtrl to 21% after

siCep164-treated cells (n > 250 anaphases, five independent experiments). CREST antiserum (red) and DAPI (blue) confirmed the presence of incomplete mitotic

congression and unattached kinetochores during late anaphase (white arrows). Doxycycline-inducible expression of WT-CEP164 during Cep164 siRNA

knockdown reduced the incidence of anaphase lag to 4%, whereas untransfected IMCD3 cells had no detectable anaphase lag (0%) (B). Bars represent SEM, p

values (Student’s t test) are indicated above the bar graph.

(C–F) The effect of roscovitine on UV-induced DDR. Cells were UV irradiated with 30 J/m2 and analyzed 1 hr after UV irradiation. Where indicated, cells were

preincubated for 24 hr with the CDK inhibitor roscovitine (80 mM). (C and D) Immunofluorescence analysis showed that roscovitine triggered uniform nuclear

542 Cell 150, 533–548, August 3, 2012 ª2012 Elsevier Inc.



Cep164 in N-GFP-CEP164-Q525X-expressing cells showed an

additive effect on growth retardation, confirming the dominant

negative effect of N-GFP-CEP164-Q525X in this experimental

system (Figure 5H).

CEP164 Directly Interacts with CCDC92 and TTBK2
NPHP-RC proteins are known to interact with other NPHP-RC

proteins in the dynamic ‘‘NPHP-JS-MKS interaction network’’

(Sang et al., 2011).To identify novel direct interaction partners

of CEP164, we performed yeast two-hybrid screening. We iden-

tified CCDC92 and TTBK2 as direct interactors of CEP164

(Figures S5C–S5J). Interactions between CEP164 and both part-

ners were validated by GST pull-down (Figure S5D) and coim-

munoprecipitation (Figures S5E–S5H). Immunofluorescence

showed that CCDC92 fully colocalizes with CEP164 at the

mother centriole (Figures S5I and S5J).

CEP164 also interacted with NPHP3 and weakly with NPHP4

(Figures S6A–S6B), demonstrating that CEP164 is in a complex

with other known NPHP-RC proteins (Figures S1A and S1B). The

DDR protein DDB1 interacted with NPHP2 (Figures S6C and

S6D). The disheveled protein (Dvl), which is a central component

of the Wnt pathway, interacts with NPHP2/inversin targeting

Dvl for proteasomal degradation, thereby triggering a switch

from canonical to noncanonical Wnt signaling (Germino, 2005;

Simons et al., 2005). We identify interaction between Dvl3 and

CEP164 (Figures S6E–S6H). Immunocytochemistry reveals that

endogenous Dvl3 and CEP164 share centrosomal localization

(Figure S6E). We demonstrate that GST-CEP164 (aa 2–195) is

sufficient to pull down endogenous Dvl3 from the cellular lysate

(Figure S6F). Domain mapping for Dvl3 suggests that CEP164

interacts with the proline-rich region of Dvl3, because only

mutants containing this sequence efficiently coimmunoprecipi-

tate with CEP164-GFP (Figure S6G). Interestingly, only wild-

type CEP164-mCherryRFP but not the NPHP-RC causing

mutant CEP164-Q525X detected in family F59 (Table 1) can be

efficiently immunoprecipitated with Dvl3 (Figure S6H), further

supporting its pathogenic role.

cep164 Loss of Function Causes NPHP-RC and DDR
Activation in Zebrafish
To test in a vertebrate model whether loss of cep164 function

results in both, an NPHP-RC phenotype as well as DDR activa-

tion, we performed cep164 knockdown in zebrafish embryos

using morpholino-oligonucleotides (MOs) (Figure 6). A p53 MO

was injected to reduce off-target MO effects (Robu et al.,
distribution of gH2AX (activated H2AX phosphorylated at Ser139) in non-UV irradi

gH2AX staining with a prominent nuclear foci pattern, characteristic of strong DD

(E and F) The effect of roscovitine on UV-triggered subcellular localization of CEP

and cytoplasmic marker 14.3.3 were analyzed by Western blot. Roscovitine decre

was most likely due to translocation of CEP164 into the nucleus upon roscovitine

increased phosphorylation of Chk1 at Ser317 (p-Chk1) (E), and roscovitine dec

cytoplasm and nucleus (E-F). Proteins 14.3.3 and Sam68 serve as controls for c

(G andH) Transient knockdown ofCep164 inhibits proliferation, which is rescued b

inducible mouse IMCD3 cells siRNA knockdown was performed. (G) IMCD3 c

nondepleted cells (control, blue line) or the nondepleted cells induced to express

depleted cells rescued the slow growth phenotype ofCep164 depletion (siRNA+do

expressed under doxycyclin control. Expression of this allele itself had a negative

even greater negative effect was seen when the endogenous Cep164 was deple

counts are plotted with standard deviations. Asterisks indicate significant differe
2007). At 28 hr postfertilization (hpf) we observed the ciliopathy

phenotypes of ventral body axis curvature and cell death (Fig-

ure 6A–6C). Embryos showed increased expression of phos-

phorylated gH2AX (Figures 6D and 6E). At 48 hpf, cep164 mor-

phants displayed the typical ciliopathy phenotype of abnormal

heart looping (Figures 6F–6I). At 72 hpf, embryos developed

further NPHP-RC phenotypes, including pronephric tubule cysts

(Figures 6J and 6K), hydrocephalus, and retinal dysplasia

(Figures 6L–6M).

Depletion of CEP164 or ZNF423(Zfp423) Causes
Sensitivity to DNA Damaging Agents
To assess whether depletion of CEP164 causes sensitivity to

DNA damage, Cep164 expression was stably suppressed in the

mouse renal cell line IMCD3 (Figures 6P and 6Q).Cep164 knock-

down resulted in a dose-dependent increase of gH2AX intensity

levels in aFACSanalysis, signifying increased radiation sensitivity

to IR and perturbed DDR. Cellular sensitivity to IR was also seen

in cells depleted ofCEP164 using amulticolor competition assay

(MCA) (Smogorzewska et al., 2007) (Figures S7A and S7B).

To test whether ZNF423(Zfp423) affects DDR, we examined

P19 cells, which express high levels of endogenous Zfp423 (Fig-

ures 6R–6T). Replicate cultures infected with lentivirus express-

ing either scrambled control or Zfp423-targeted shRNA were

exposed to 0–10 Gy of X-irradiation and imaged for Zfp423

and nuclear gH2AX foci (Figure 6R). Quantification showed sig-

nificantly increased gH2AX intensities in Zfp423-depleted cells

at lower (0.5 and 1.0 Gy) exposures (Figure 6S), but the effect

was nonsignificant when corrected for the number of exposures.

To determine whether sensitivity to lower dose is reproducible,

we exposed 32 additional cultures at 1.0 Gy (Figure 6T). Normal-

ized gH2AX fluorescence in Zfp423 knockdown had both higher

mean (9.6 versus 4.7) and median (6.6 versus 5.2) values than

control (Figure 6T). These data replicate the radiation sensitivity

with high significance (p = 0.018, Mann-Whitney U test, 2 tails),

indicating that P19 cells require Zfp423 for quantitatively normal

DDR. These results are further confirmed by multicolor competi-

tion assays Figure S7C.

DISCUSSION

Disease Gene Identification Implicates NPHP-RC
Proteins in DDR
Many DDR signaling proteins localize to nuclear foci and

to centrosomes. In addition, dual localization of proteins at
ated cells suggesting partial DDR activation (C). UV radiation caused enhanced

R activation (D). (C and D) Error bars denote SEM.

164 and Chk1. CEP164 and Chk1 proteins, along with nuclear marker Sam68

ased the amount of CEP164 present in control and UV-irradiated cells (E). This

treatment as shown by subcellular fractionation (F). As expected, UV radiation

reased Chk1 protein expression and abrogated UV-induced p-Chk1 in both

ytoplasmic versus nuclear fraction, respectively. See also Figure S6.

y wild-type but notmutant CEP164. In clonally selected and doxycycline (Dox)-

ells depleted of murine Cep164 grew more slowly (siRNA, green line) than

human wild-type CEP164 (Dox, red line). Expression of WT Cep164 in siRNA-

x, purple line). (H) As in (G), exceptmutantCep164 cDNA (CEP164-Q525X) was

impact on cell growth (green line), suggesting a dominant negative effect. An

ted in cells expressing CEP164-Q525X (siRNA+dox, purple line). The average

nces by unpaired Student’s t test (p < 0.05).
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Figure 6. Knockdown of cep164 in Zebrafish Embryos Results in Ciliopathy Phenotypes, and Knockdown of Cep164 or Zfp423(Znf423)

Causes Sensitivity to DNA Damage

A morpholino-oligonucleotide (cep164 MO) targeting the exon 7 splice donor site of zebrafish cep164 was injected into fertilized eggs at the one to four-cells

stage together with p53 MO (0.2 mM) to minimize nonspecific MO effects.
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centrosomes and at nuclear foci has been demonstrated for

multiple known DDR proteins related to ataxia or CVH. Individ-

uals with mutations in the three NPHP-RC-causing genes that

we identify here, MRE11, ZNF423, and CEP164, share the

NPHP-RC phenotypes of CVH and ataxia. The first protein that

strongly linked DDR signaling to the ataxia phenotype was the

protein ATM (ataxia telangiectasia mutated) (Savitsky et al.,

1995). Interestingly, we identify here in individuals with NPHP-

RC, CVH and ataxia, mutations in proteins that colocalize to

nuclear foci with TIP60 and/or its interaction partner SC35.

These proteins are ZNF423, CEP164, and the previously identi-

fied NPHP-RC protein SDCCAG8/NPHP10 (Otto et al., 2010).

Our findings support the notion that many products of genes,

which if mutated cause NPHP-RC and/or ataxia, play a role in

DDR and are part of a dynamic protein complex.

A DDR-Based Pathogenic Hypothesis of Dysplasia and
Degeneration in NPHP-RC
We here generate evidence that NPHP-RC proteins exhibit dual

localization at centrosomes and in nuclear foci and that they play

a role in DDR. We also demonstrate the parallel occurrence of

DDR defects with an NPHP-RC phenotype upon cep164 knock-

down in zebrafish. We therefore propose that defects in DDR

may participate in the pathogenesis of NPHP-RC. Whereas

multiple signaling pathways have been implicated in the patho-

genesis of NPHP-RC (Hildebrandt et al., 2011), including nonca-

nonical (Simons et al., 2005) and canonical Wnt signaling (Yu

et al., 2009), Shh signaling (Huangfu et al., 2003), and mitotic

spindle orientation (Fischer et al., 2006), none of them con-

sistently explains the phenotypes observed. In particular, none

of these mechanisms provides a model for the dichotomy of

dysplasia phenotypes resulting from null-alleles of NPHP-RC

genes versus degenerative phenotypes resulting from hypomor-

phic alleles of the same NPHP-RC genes. Based on our findings
(A–E) Whereas p53MO injection (n = 67) did not produce any phenotype (A), coin

body axis curvature in 48%of embryos (60/125) (B). 50%of embryos (62/125) sho

the head region (C). Embryos with severe cell death also showed increased exp

embryos with massive cell death did not survive beyond 48 hpf.

(F–I) At 48 hpf, surviving cep164morphants displayed the ciliopathy phenotype o

(F and G), cep164 MO caused inverted heart looping (H) or ambiguous heart loo

(J–M) At 72 hpf, cep164morphant embryos developed further ciliopathy phenoty

exhibited cystic dilation (K), asterisks) in 25% (7/28) of embryos, compared to p53

(asterisk), or retinal dysplasia (brackets) (M).

(N) At 0.2 mM, cep164 MO knockdown effectively altered mRNA processing as

aberrantly spliced mRNA product appeared in cep164 morphants (asterisks), an

affect cep164 mRNA processing.

(O) Quantification of g-H2AX levels in cep164MOmorphants.Whole-fish lysatesw

MO (p53 0.2 mM, cep164 0.2 mM). Injection of cep164-targeting MO causes upre

H2AX levels correlate with the phenotypic severity of the cep164 morphants (see

(P and Q) Cep164-deficient IMCD3 cells exhibit radiation sensitivity. In IMCD3 ce

shRNA knockdown to about 20%of control as judged by qPCR (P).Cep164 knock

assay, signifying increased radiation sensitivity to IR and perturbed DDR. See a

indicated by an asterisk. Error bars denote SEM.

(R–T) Zfp423(Znf423)-deficient P19 cells exhibit radiation sensitivity. P19 cells tran

Zfp423 and gH2AX immunofluorescence was quantified in matched replicate cu

dose-responsiveness of gH2AX and effective knockdown of Zfp423 expression.

and 1.0 Gy, signifying increased IR sensitivity and perturbed DDR (2 fields from

p< 0.05,Mann-WhitneyU test, 2 tails. (T) Histogram shows average gH2AX intens

p = 0.018, Mann-Whitney U test, 2 tails. See also Figure S7. Box plots delimit qu
we here propose a pathogenic hypothesis for NPHP-RC that

implicates DDR signaling as a relevant disease mechanism.

Within this hypothesis, loss of function of NPHP-RC proteins

with a dual role in DDR and centrosomal signaling, would cause

disturbance of cell-cycle checkpoint control, which is particu-

larly detrimental for embryonic and adult progenitor cell survival.

This notion is in accordance with the orthologous mouse model

for ZNF423 loss of function, the Zfp423�/� mouse, in which CVH

with ataxia is caused by defective granule progenitor prolifera-

tion in the cerebellum (Alcaraz et al., 2006).

Within this pathogenic hypothesis for NPHP-RC, a DDR

signaling defect would lead to impairment of cell-cycle check-

point control, which in turn would cause lack of progenitor

cells. This hypothesis could lend a possible explanation to the

following persisting conundrum of NPHP-RC pathogenesis: in

certain NPHP genes (e.g., NPHP3, 6, or 8) null mutations cause

severe, congenital-onset phenotypes of dysplasia and malfor-

mation in kidney, eye, CVH, and liver, whereas hypomorphic

mutations in the same gene cause only late-onset degenerative

phenotypes such as renal tubular degeneration and fibrosis

(nephronophthisis), retinal degeneration (Senior-Loken syn-

drome), and liver fibrosis. However, the disease mechanisms

of neither the degenerative nor the dysplastic phenotypes are

understood. These findings suggest that null mutations act

during morphogenesis in embryonic development causing dys-

plasia and malformation, whereas hypomorphic mutations act

during the ‘‘chronic’’ processes of tissue maintenance and

repair, which are spread out over months or years of the life of

an organism. Because DDR signaling is in high demand under

conditions of high proliferation during development (morpho-

genesis), causing high ‘‘replication stress’’ to progenitor cells,

tissue dysplasia would be an expected pathogenic outcome.

Conversely, during tissue maintenance, low replication stress

would be expected, but persistent DDR impairment would allow
jection of cep164MO at 28 hpf caused the mild ciliopathy phenotype of ventral

wed severe cell death throughout the body as judged by gray-appearing cells in

ression of phosphorylated gH2AX (D) compared to p53 MO control (E). Most

f laterality defects. Whereas p53MO did not cause any abnormal heart looping

ping (I). (A, atrium; L, left; V, ventricle).

pes. When compared to p53MO controls (J), pronephric tubules (arrow heads)

MO controls (J and L), 0% (0/67) of which showed kidney cysts, hydrocephalus

revealed by RT-PCR. The wild-type (WT) mRNA product is 339 bp. A shorter

d the normal mRNA product was significantly reduced. p53 MO alone did not

ere prepared frommorphants injected with control MO (p53 0.2mM) or cep164

gulation of g-H2AX in cep164morphant embryos signifying perturbed DDR. g-

A–C). Anti-a-tubulin antibody was used to show equal loading.

lls transduced with shRNA retrovirus, Cep164 expression was suppressed by

down resulted in a dose-dependent increase of gH2AX-positive cells in a FACS

lso Figure S7. In (Q) the level of significance of two-tailed t test (p < 0.001) is

sduced with shRNA lentivirus were exposed to the indicated level X-irradiation.

ltures for each virus 2 hr after irradiation. (R) Representative images illustrate

(S) gH2AX intensity normalized to DAPI+ nuclei is increased following IR at 0.5

each of 6 replicate cultures per condition). Asterisks, uncorrected pair-wise

ity per cell in 16 additional replicate cultures for each shRNA at 1.0Gy exposure.

artiles in (S).
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slow accumulation of DNA damage with a phenotype of tissue

degeneration.

At least two related findings support this model: (1) In a mouse

conditional knockout model of the cystic kidney disease

gene Pkhd1, knockout of the gene before 2 weeks of postnatal

life, up to which a high proliferation state prevailed, caused

(dysplastic) kidney cysts, whereas knockdown after 2 weeks

of postnatal life, when proliferation rate was shown to be

dramatically reduced, only caused occasional cysts, the number

of which increased when tissue injury was induced (Piontek

et al., 2007). This phenomenon could be explained by different

degrees of replication stress, and thereby DDR activation, under

different proliferation rates. (2) In Seckel syndrome (primordial

dwarfism), a progeria syndrome with CVH caused by mutation

of the centrosomal and DDR proteins ATR, CEP152, or pericen-

trin, the degree of cerebellar impairment is dependent on cell

proliferation state (Kalay et al., 2011; Murga et al., 2009; Rauch

et al., 2008).
A DDR-Based Pathogenic Hypothesis Might Explain
Specific Organ Involvement in NPHP-RC
Regarding the question why organ degeneration occurs in

specific organs and at characteristic sites, it is tempting to spec-

ulate that the specific tissue regions or cell types affected in

NPHP-RC are more strongly exposed to genotoxins. In the

kidney, the distal convoluted tubule segment, around which

most fibrotic changes occur, is more strongly exposed to geno-

toxins such as hydroxyurea. Retinal degeneration could be

caused by postnatal accumulation of UV light-induced DNA

damage. Most strikingly, bile duct-surrounding cholangiocytes

in the liver are the one mammalian cell type that is most strongly

exposed to genotoxins that are generated by the liver for excre-

tion in bile.

In summary, a testable pathogenic hypothesis of NPHP-RC

that implicates DDR signaling, impaired cell-cycle checkpoint

control with lack of progenitor cells might potentially explain

some of the ill understood features of ciliopathies:

(1) It might provide a mechanism for the dual phenotypes of

degeneration/dysplasia seen in NPHP-RC in kidney, eye,

cerebellum and liver.

(2) It would implicate in the NPHP-RC pathogenesis, lack of

response to replication stress-sensing as a functional

basis for understanding the dualism of dysplasia that

occurs in high-proliferation states during development/

morphogenesis or repair versus degeneration, which oc-

curs during the low proliferation state of tissue mainte-

nance.

(3) It would characterize the degenerative phenotypes as

diseases of ‘‘organ-specific premature aging,’’ thereby

pointing in new directions for identification of small com-

pounds for therapy including cyclin inhibitors.

EXPERIMENTAL PROCEDURES

Research Subjects

We obtained human samples following informed consent from individuals with

NPHP-RC. Approval for human subjects research was obtained from the
546 Cell 150, 533–548, August 3, 2012 ª2012 Elsevier Inc.
University of Michigan Institutional Review Board and the other institutions

involved. The diagnosis of NPHP-RC was based on published clinical criteria

(Chaki et al., 2011).

Linkage Analysis

For genome-wide HM the GeneChip Human Mapping 250k StyI Array from

Affymetrix was used. Nonparametric LOD scores were calculated using a

modified version of the programs GENEHUNTER 2.1 (Kruglyak et al., 1996;

Strauch et al., 2000) and ALLEGRO (Gudbjartsson et al., 2000) in order to iden-

tify regions of homozygosity as described (Hildebrandt et al., 2009; Sayer et al.,

2006).

Bioinformatics

Genetic location is according to the February 2009 Human Genome Browser

data (http://www.genome.ucsc.eduH).

Immunoblotting and Immunoprecipitation

Immunoblotting and immunoprecipitation were performed as previously

described (Bryja et al., 2007). HEK293 cells were transfectedwith the indicated

constructs and lysed 48 hr later. Samples were analyzed using SDS-PAGE and

western blotting, or subjected to immunoprecipitation. The antibodies used for

immunoprecipitation are described in Extended Experimental Procedures.

cep164 Zebrafish Morpholino Oligo-Mediated Knockdown

MOs were obtained from Gene Tools, LLC (Philomath, OR). MOs (cep164 at

0.1 mM, standard control at 0.2 mM, and p53 MO at 0.2 mM) were injected

into zebrafish embryos at 1–4 cell stages. Embryos were fixed at 27 hpf with

4% PFA/PBS +1% DMSO overnight, permeablized with acetone at �20�C
for 7 min, and stained with antibody against phosphorylated zebrafish

gH2AX (1:1,000, gift from Amatruda lab at UT Southwestern) or antibody

against cleaved Caspase-3 (1:200, BD Biosciences). Alex568-anti rabbit IgG

was used at 1:2,000 and 1:1,000 respectively. The IF procedure followed stan-

dard protocol. Morpholinos were: cep164 MO: 50-TATATGCTCTTCTCCATC

ACCTCAT; p53 MO: 50-GCGCCATTGCTTTGCAAGAATTG. For histological

analyses, embryos were fixed at 72 hpf with 4% PFA/PBS and embedded in

JB-4 resin (PolySciences) following themanufacturer’s protocol. Six millimeter

sections were obtained using a Leica R2265 microtome and stained with

hematoxylin-eosin following published procedures (Zhou et al., 2010).

Statistical Analysis

Student’s two-tailed nonpaired t tests and normal distribution two-tailed

z tests were carried out using pooled standard error and S.D. values to deter-

mine the statistical significance of different cohorts.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven

figures, and two tables and can be foundwith this article online at http://dx.doi.

org/10.1016/j.cell.2012.06.028.
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