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Complex transcription interwoven between and 
within protein-coding genes produces many thou-
sands of long non-coding RNAs (lncRNAs) that 
are greater than 200 nucleotides (nt) in length 
but that appear to lack protein-coding potential 
(Djebali et al., 2012). Nevertheless, even for the 
earliest discovered lncRNAs, such as mammalian 
H19, Xist or fruitfly roX, molecular effects and 
functional significance have proven difficult to 
establish (Gabory et al., 2010; Ilik et al., 2013; 
Sado and Brockdorff, 2013). Furthermore, no 
or only subtle mouse phenotypes were revealed 
by detailed loss-of-function studies of Malat1 or 
Evf-2. In contrast, mutation of Fendrr results in 
early lethality, and targeted replacement of BC1 
results in seizures for some mice (Table 1). It is not 
possible to accurately predict from the level or 
extent of its expression, or its sequence composi-
tion, whether disruption of a lncRNA locus will 
result in an overt phenotype. This makes loss- or 
gain-of-function experiments crucial to under-
standing the roles of lncRNAs in vivo.

Many lncRNAs are known to act as primary host 
transcripts for classes of small non-coding RNAs 
(da Rocha et al., 2008; Royo and Cavaille, 2008). 
However, lncRNAs are also presumed to regulate 
the expression either of their neighbouring genes 
in cis, or of more distant genes in trans (Figure 1). 
The function of a lncRNA may be mediated by 
the gene's RNA product which can bind to pro-
teins or to other nucleic acids thereby modulating 
their functions. This could act by competing with 
endogenous mRNAs for miRNA binding (Franco-
Zorrilla et al., 2007; Poliseno et al., 2010; Jeck 
and Sharpless, 2014), providing binding sites 
for small RNAs that elicit transcriptional silencing 
(Wierzbicki et al., 2009), or through altering 
protein activity (Feng et al., 2006), binding or 
specificity (reviewed in Guttman and Rinn, 2012). 
Alternatively, the act of transcription per se through 
a lncRNA locus could be critical because of the 
changes this generates in chromatin structure, 
modification or protein binding: in this case the 
resultant RNA could be an incidental by-product 
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Table 1. Representative studies that have disrupted lncRNA loci in vivo (N/A—not applicable)

lncRNA  
name Organism

Mutation  
strategy

Reported animal  
phenotype

RNA-based  
rescue? Reference

Xist Mus musculus ∼15 kb replaced  
with a neo expression  
cassette

Females inheriting  
paternal allele were  
embryonic lethal;  
males fully viable

No (Marahrens et al.,  
1997)

Xist Mus musculus Inversion of Exon 1  
to intron 5

Embryonic lethality  
of paternally inherited  
allele

No (Senner et al.,  
2011)

H19 Mus musculus Replacement by  
neo cassette

Slightly increased  
growth

No (Ripoche et al.,  
1997)

roX Drosophila  
melanogaster

Deletions of roX1  
or roX2

None, except when  
in combination:  
male‐specific  
reduction in viability

Yes (Meller and  
Rattner, 2002)

Kcnq1ot1 Mus musculus Promoter  
deletion

Growth deficiency for  
paternally inherited  
mutation

No (Fitzpatrick et al.,  
2002)

Airn Mus musculus Premature  
transcriptional  
termination

Growth deficiency for  
paternally inherited  
mutation

No (Sleutels et al.,  
2002)

Evf2 Mus musculus Premature  
transcriptional  
termination

None N/A (Bond et al., 2009)

BC1 Mus musculus Replacement  
of promoter and  
exon by PgkNeo  
cassette

Vulnerable to  
epileptic fits after  
auditory stimulation

No (Zhong et al.,  
2009)

Neat1 Mus musculus 3 kb Promoter  
and 5’ deletion

None N/A (Nakagawa et al.,  
2011)

Tsx Mus musculus 2 kb Promoter  
and exon 1 deletion

Smaller testes and  
less fearful (males)

No (Anguera et al.,  
2011)

Malat1 Mus musculus Deletion None N/A (Eissmann et al.,  
2012)

Malat1 Mus musculus lacZ insertion and  
premature transcriptional  
termination

None N/A (Nakagawa et al.,  
2012)

Malat1 Mus musculus 3 kb Promoter and  
5’ deletion

None N/A (Zhang et al.,  
2012)

Hotair Mus musculus Deletion Spine and wrist  
malformations

No (Li et al., 2013)

Hotdog  
and Twin  
of Hotdog

Mus musculus Large (28 Mb)  
translocation  
by inversion

Loss of Hoxd  
expression in  
the cecum

N/A (Delpretti et al.,  
2013)

Fendrr Mus musculus Replacement of exon 1  
with transcriptional stop  
signal

Embryonic lethal  
around E13.75

Yes (majority  
of embryos)

(Grote et al.,  
2013)

Fendrr Mus musculus Locus replacement  
with lacZ cassette

Perinatal lethality No (Sauvageau  
et al., 2013)

Peril Mus musculus Locus replacement  
with lacZ cassette

Perinatal lethality No (Sauvageau  
et al., 2013)

Mdgt Mus musculus Locus replacement  
with lacZ cassette

Reduced viability  
and reduced growth

No (Sauvageau  
et al., 2013)

15 other  
lncRNA  
loci

Mus musculus Locus replacement  
with lacZ cassette

None N/A (Sauvageau  
et al., 2013)
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(Petruk et al., 2006; Latos et al., 2012; 
Marquardt et al., 2014). In these latter cases, 
any technique intended to dissect mechanism 
must alter the act and extent of transcription 
rather than change RNA levels. This multiplicity 
of lncRNA functional mechanisms means that a 
toolkit of experimental strategies to dissect their 
modes of action will need to be added to those 
currently employed for investigating protein-
coding genes. Protein-coding genes have been 
shown to contribute greatly to biological func-
tion, which is not yet the case for lncRNA loci, 
rendering their rigorous investigation particularly 
important.

Analysis of lncRNA localisation both on a 
tissue and subcellular level by techniques such as 
fluorescent in situ hybridisation (FISH, Chakraborty 
et al., 2012) can give important insights into the 
cell types that are important for their function, 
and in which subcellular compartment they act. 
Understanding the mechanism of action of lncR-
NAs often relies on identification of interacting 
proteins or nucleic acids by RNA-protein (e.g., 
crosslinking immunoprecipitation, CLIP, Huppertz 
et al., 2014), RNA–RNA (e.g., crosslinking analysis 

of synthetic hybrids, CLASH, Helwak et al., 2013) 
or RNA-DNA (e.g., CHART, Simon et al., 2011; 
Vance and Ponting, 2014 and ChIRP, Chu et al., 
2011) interaction assays. However, due to the 
nature of the RNA molecule, many assays are 
prone to non-specific binding, and it is critical to 
ensure that appropriate controls are performed 
(Brockdorff, 2013). Several of these techniques 
have therefore been designed to identify direct 
interactors by crosslinking, and subsequent use 
of denaturing conditions to remove non-specific 
interactions. These techniques are clearly impor-
tant in determining the mechanism of action of 
lncRNAs, and are critical to guide experimental 
genetic knockout design. However, an under-
standing of the functional importance of lncRNAs 
in the context of the whole organism still relies on 
manipulating their expression by genetic modi-
fication, overexpression or knockdown strategies, 
and analysis of the resulting phenotypes.

The earliest studied lncRNAs were those asso-
ciated with imprinting, such as Airn and H19, or 
X chromosome regulation, such as Xist or roX1/2 
(Table 1). In these cases, lncRNA expression was 
initially linked genetically to a known phenotype, 

Figure 1. lncRNAs can act through cis and/or trans mechanisms. lncRNAs (pink) can act to regulate expression 
of their genomically neighbouring protein-coding genes (black) in cis (upper panel), or of distant protein-coding 
genes in trans (lower panel). In both situations, the RNA moiety itself may act through binding to cellular proteins 
(blue ovals) or via base-pairing with other RNAs (blue stem-loop) to modulate their function or binding. The RNA 
may also directly bind double-stranded DNA in trans (Grote et al., 2013) or in cis (Senner et al., 2011). The lncRNA 
locus (pink) may also encompass transcription factor binding sites (TF) that regulate the transcription of neighbouring 
genes. This effect may either be entirely independent of the lncRNA, or the binding of transcription factors may be 
affected positively or negatively by the act of transcription through the lncRNA locus. In this case, the mature 
RNA product would be incidental.
DOI: 10.7554/eLife.03058.003
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and cell line models accurately reflected the in 
vivo models (Hao et al., 1993; Keniry et al., 2012; 
Latos et al., 2012; Helwak et al., 2013; Huppertz 
et al., 2014). These results highlight that the 
early models of lncRNAs involved in imprinting 
and X chromosomal dosage compensation could 
act as paradigms for the study of lncRNAs today 
(Kohtz, 2014). In the absence of a priori pheno-
typic associations, some lncRNAs have been cho-
sen for study on the basis of their tissue restricted 
patterns of expression, sequence conservation, 
or cellular localisation. Others, such as MALAT1 
(whose level of expression is associated with 
metastasis) have been selected on the basis of 
their suggested association with disease. Neat1 
and Malat1 (also known as Neat2) are linked loci 
that produce highly expressed lncRNAs whose 
sequences are well conserved across diverse 
mammals and which have specific nuclear local-
isations (Chu et al., 2011). In cells, Neat1 was 
shown to be essential for nuclear paraspeckle 
assembly and maintenance (Clemson et al., 2009; 
Sasaki and Hirose, 2009; Sunwoo et al., 2009; 
Mao et al., 2011a, 2011b; Zhang et al., 2012) 
and Malat1/Neat2 binds to the Polycomb 2 (PC2) 
protein which is required for activating growth-
control genes (Vance and Ponting, 2014). 
Nevertheless, in vivo disruption of either of these 
lncRNA loci results in viable and fertile mouse 
models (Table 1).

Confirmation or rejection of lncRNA function-
ality requires experimental evidence that clearly 
separates the role of the genomic locus from the 
role of its RNA products. Here we recommend 
experimental techniques that achieve this sepa-
ration whilst minimising disruption of the DNA 
sequence. Furthermore, we propose some con-
siderations that may assist in interpreting phe-
notypes arising from mutation of a lncRNA or 
lncRNA locus (Box 1).

In vivo, loss-of-function strategies
Different genetic loss-of-function strategies can 
be employed in vivo to study the function of lncR-
NAs (Figure 2). Prioritisation of strategy should 
depend on the lncRNA's known biology, including 
its localisation to one or more of the cytoplasm, 
nucleus or chromatin. In one study, the majority 
of human lncRNAs were enriched in the cyto-
plasm (van Heesch et al., 2014) and these may 
associate with ribosomes and, contrary to expec-
tations, some may be translated (Guttman et al., 
2013; Kim et al., 2014; Wilhelm et al., 2014). 
Nuclear lncRNAs, particularly those that are 
chromatin-associated, could act as cis-acting 

transcriptional regulators, whereas cytoplasmic 
or nucleoplasmic lncRNAs might be predicted to 
function in trans; by contrast, some nucleoplasmic 
lncRNAs may of course be non-functional products 
of transcription.

Depletion of protein-coding transcripts is 
often achieved using RNAi-based techniques, 
which supply double-stranded RNA that is able to 
trigger post-transcriptional destabilisation of the 
mature mRNA and inhibit translation, predomi-
nantly in the cytoplasm. Although the presence of 
active RNAi factors in human cell nuclei has been 
proposed (Gagnon et al., 2014) the extent to 
which exclusively nuclear lncRNAs can be knocked 
down remains unclear. Whilst useful for studies of 
many trans-acting lncRNAs, RNAi-based knock-
down acts post-transcriptionally, and therefore 
does not block the act of transcription, preclud-
ing analyses of lncRNAs which may produce their 
effects via this mechanism.

Another experimental approach is to geneti-
cally manipulate the lncRNA locus. When inserting 
transcriptional terminator sequences care must be 
taken to control for changes in spacing between 
DNA regulatory elements and to take account of 
regulatory elements that may be inadvertently 
inserted, such as promoters of resistance genes, 
since these may be able to drive expression of 
neighbouring genes or divert activities from nearby 
enhancers. Insertion of exogenous sequences can 
induce phenotypes (Steshina et al., 2006). Even 
single loxP sites can attract germline methylation 
that might potentially repress flanking regulatory 
elements (Rassoulzadegan et al., 2002). Extra 
controls are thus needed to identify possible 
gain-of-function effects arising from inserted 
sequences, such as reporters or selection cassettes. 
The advent of programmable nucleases (Kim and 
Kim, 2014) provides opportunities to investigate 
these possibilities. Transcriptional terminator 
sequences can vary in their efficacy depending on 
the genomic context into which they are inserted, 
which can cause termination to be highly ineffi-
cient. For example, a sequence that efficiently 
terminates transcription in multiple contexts in 
Airn, failed to do so when inserted close to a CpG 
island (Latos et al., 2012).

Other approaches include deletion of the full-
length lncRNA locus or its promoter sequence, 
mutation of putative functional domains or tar-
geted interruption between the promoter and 
the RNA sequence through an engineered inver-
sion (Figure 2; Table 1). Whilst useful, such strat-
egies may not always be successful. Promoter 
inversion, for instance, may not always abrogate 
transcription, because of the bidirectionality of 
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Box 1. Considerations when 
interpreting phenotypes resulting 
from lncRNA mutation

General Considerations

•	 The design of functional experiments should be guided by 
the essential RNA biology of the chosen lncRNA locus: its 
proximity to protein-coding genes, its chromatin signa-
tures, stability, copy number, full-length transcript models 
and tissue expression profiles. If it shares a bidirectional 
promoter then minimise interference with the adjacent  
locus when designing targeting strategies. If more abun-
dant and stable, with promoter-like chromatin marks at 
its transcriptional start site, then consider whether the 
lncRNA acts in trans in an RNA dependent manner.

•	 Consider all available transcript, regulatory element and 
evolutionary evidence when designing mutations.

•	 Consider whether, contrary to initial expectations, the 
lncRNA encodes protein or, as for H19, harbours a miRNA.

•	 Choice of loss-of-function strategy and prediction of whether 
the lncRNA acts in cis or in trans should be informed by its 
cytoplasmic, nuclear or chromatin localisation. If found 
in the cytoplasm, consider whether it is, in fact, translated. 
If chromatin-associated consider whether it acts in cis. In 
contrast, if cytoplasmic or nucleoplasmic, consider whether 
it is trans-acting.

•	 Choose cells for functional experiments in which the 
lncRNA is relatively highly expressed, certainly at greater 
than one molecule per cell.

•	 Minimise genomic sequence disruptions when investigat-
ing lncRNA or lncRNA locus function. Use control manipu-
lations to distinguish disruptions influencing flanking 
genes from those influencing the lncRNA.

•	 Investigate each locus using multiple complementary 
strategies, for example introduction of minimal targeted 
DNA deletions, inversions or disruptions and, separately, of 
transcriptional truncation cassettes. Consider using controls 
for genetic manipulations of lncRNA loci: inverting the trun-
cation cassette where possible, using a mutated truncation 
cassette, using a different type of truncation cassette, and 
using different sites to truncate the lncRNA. It is important 
to remove any selection cassettes and to consider the  
influence of reporter genes and loxP sites on the locus. 
Fully describe the mutated locus, including whether the 
selection cassette is retained.

•	 Assay biological replicates separately. Embryonic stem 
(ES) or induced pluripotent (iPS) cells frequently vary in 
their differentiation kinetics, especially after undergo-
ing gene targeting and selection, and mouse embryos, 
particularly early implantation stage mouse embryos, show 
considerable variation in developmental timing. Similarly, 
cancer cell lines are inherently genetically unstable. This 
variability makes it essential to study multiple clones of 
cells or independently derived mutants to ensure that the 
effects observed are due to the mutation of interest, and not 
dependent on other effects of the genetic background. This is 
especially important when the phenotypic effects are subtle.

Assessment of evidence for lncRNA functionality

•	 Consider the evidence for each of the many known tran-
scriptional or post-transcriptional, nuclear or cytoplasmic, cis 
or trans, RNA-dependent or -independent mechanisms of 
lncRNAs.

•	 Employ RNAi-based techniques principally when investi-
gating cytoplasmic RNAs and post-transcriptional RNA-
dependent mechanisms. If using RNAi, the knockdown 
effect on the cytoplasmic and nuclear compartment should 
be determined separately. An alternative is to use antisense 
DNA oligos to induce an RNase H activity in the nucleus.

•	 Only claim that a phenotype is caused by alteration of a 
trans-acting lncRNA transcript when it is successfully and 
repeatedly rescued upon expression of the lncRNA from 
an independent transgene.

•	 Take advantage of carefully controlled biochemical  
approaches when assessing the potential function of a lncRNA.

Publications and reporting

•	 Assess and report objectively all evidence for or against 
RNA sequence-dependent function or transcription- 
dependent (RNA sequence-independent) function.

•	 Report phenotypes precisely. Commonly, gene knockouts 
kill embryos at critical periods for example, implantation, 
gastrulation, 12.5dpc when the cardiovascular system become 
essential, and at birth when lungs and many other systems 
become essential. In general the maternal organs rescue many 
organ defects of the embryo. For ES cells, phenotypes affect-
ing pluripotency need to be defined and should be consid-
ered with caution due to the inherent instability of this state.

•	 Explicitly caution when evidence for RNA-dependent  
vs–independent function, or trans- vs cis-acting function,  
is not clear-cut. 

promoters (Wu and Sharp, 2013), and promoter 
deletion may also disrupt the expression level of 
protein-coding transcripts with which lncRNAs 
share a bidirectional promoter. In all of these 
cases, it is important to minimise the removal or 

reorganisation of regulatory factor binding sites 
or other regulatory elements within the DNA, 
and to control for the addition of novel binding 
sites. For example, it should be borne in mind 
that many lncRNAs initiate within enhancers 

http://dx.doi.org/10.7554/eLife.03058
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(Marques et al., 2013) and in these cases  
disruption of the lncRNA promoter could also 
cause unintended changes in gene expression. In 
the case of transcription terminators, to ensure 
effects are due to changes in RNA rather than 
DNA, inversions of the terminator sequence or a 
variety of different terminators can be used. In 
the experimental design it is also important  
to consider alternatively spliced transcripts and 

additional transcriptional start sites to ensure full 
abrogation of lncRNA expression.

Antisense oligonucleotides might provide an 
alternative technique for analysis of lncRNA func-
tion. They are thought to act by forming a DNA/
RNA hybrid with the nascent RNA transcript, and 
triggering RNase H-dependent degradation of 
the RNA in the nucleus (Figure 2). This reduces 
the level of the RNA before the mature transcript 

Figure 2. Different strategies for analysis of lncRNA loss-of-function. Strategies that have been used to alter lncRNA 
function are described pictorially, with the wild type situation on the top-most line. The lncRNA locus is indicated in 
pink, neighbouring protein-coding gene in blue, transcription factor binding sites within it by blue and purple ovals, 
transcriptional terminator sequences in yellow (‘Term’) and the process of transcription by grey dotted lines. 
Antisense oligonucleotides are able to bind to nascent RNA transcripts and trigger RNase H mediated degradation 
of the transcript in the nucleus. RNAi is elicited by short RNA species that bind to argonaute proteins (Ago, green 
oval) within the cell. This complex recognises complementary lncRNA molecules in the cytoplasm, and triggers 
their destabilisation by the endogenous cellular machinery. The CRISPR and TALE systems use designer DNA 
binding factors to recruit repressor or activator domains (orange oval) to the lncRNA to affect transcriptional initiation. 
The effects of each strategy upon the process of transcription and presence of underlying DNA elements such as 
transcription factor binding sites are indicated. The possibility of generating stable transgenic animals to investigate 
phenotypes throughout development is also noted.
DOI: 10.7554/eLife.03058.004
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is produced, but the nature and extent of off-target 
effects are not fully understood and may be sub-
stantial (Sahu et al., 2007). Also, it is not possible to 
generate stable transgenic lines, which restricts 
analysis to cell lines or to systems where the oligo-
nucleotides can be supplied by injection. Other 
approaches to disrupting lncRNA function use mor-
pholino antisense oligos targeting e.g. splice sites 
(Ulitsky et al., 2011), or locked nucleic acid anti-
sense oligonucleotides (Sarma et al., 2010).

Recent developments in rational design of DNA 
binding factors using transcription activator-like 
effector (TALE) proteins or the clustered regularly 
interspersed palindromic repeats (CRISPR) system 
have enabled recruitment of transcriptional activa-
tion (Cheng et al., 2013) or repression domains 
(Cong et al., 2012; Gilbert et al., 2013) to defined 
sites within the genome to modulate transcription, 
or to directly interfere with the passage of the RNA 
polymerase. These techniques could be used to 
modulate the rate of transcriptional initiation or 
elongation of the lncRNA (Figure 2), but care must 
be taken to control for direct effects of these factors 
on the transcription of neighbouring genes.

Separating RNA- from  
DNA-sequence dependent effects
Deletion of a lncRNA genomic locus does not 
cleanly separate a role of the lncRNA per se from 
a role of other functional elements contained 
within the underlying DNA. Such elements might 
be irrelevant to the lncRNA's function, yet critical 
to the normal function of a neighbouring protein-
coding gene. Eighteen mouse knockout lines 
were recently described in which genomic regions 
containing intergenic lncRNA loci (21.6 kb mean 
size, 4.8 kb–49.7 kb range) were deleted and 
replaced by a lacZ reporter cassette (Sauvageau 
et al., 2013). For 13 of these lines no overt phe-
notypes were reported. In contrast, strong phe-
notypes from 5 knockout lines were observed: 
Peril−/− or Fendrr−/− mice have reduced viability; 
Mdgt−/− and linc-Pint−/− mice show growth defects; 
and linc-Brn1b−/− mice exhibit abnormal cortical 
anatomy. The authors conclude that these devel-
opmental disorders generated by DNA deletions 
demonstrate the critical roles that lncRNAs play 
in vivo (Sauvageau et al., 2013).

While this may be the correct interpretation, 
the strong phenotypes observed in these lines 
may derive from the engineered deletion of cis-
regulatory DNA elements lying within these large 
DNA deletions that are critical for the normal 
functions of proximal protein-coding genes. For 
instance Fendrr is 1.4 kb from Foxf1, and Mdgt 

starts only 84 bp from the 5′ exon of Hoxd1 and 
terminates close to Hoxd3 (Figure 3). Consistent 
with this notion, data from the ENCODE project 
indicate that the genomic region deleted in 
Mdgt−/− lines contains binding sites for several 
transcription factors and chromatin regulatory 
proteins (Figure 3). Whilst the authors detected 
no global change of neighbouring protein-coding 
gene expression as assessed by limited RNAseq of 
tissues, it is still possible that altered cell type or 
developmental stage specific expression of these 
genes escaped detection. LncRNAs are often tran-
scribed in a highly restricted cell population and a 
global, high-throughput analysis of even the full 
embryo may not have been informative. Ultimately, 
the best evidence for RNA-dependent lncRNA 
function derives from loss-of-function, followed by 
complementation approaches, as for example 
described in Grote et al. (2013).

This issue is also relevant for other lncRNAs 
transcribed from within Hox gene clusters. In the 
case of Hotair (Rinn et al., 2007), a several kb large 
deletion of the entire Hotair genomic DNA in vivo 
induces a subtle morphological phenotype in the 
spine, which was interpreted as a gain-of-function 
of Hoxd genes in trans (Li et al., 2013). However, 
Hotair is embedded in the HoxC gene cluster and 
topological modifications or re-arrangements in 
such a dense series of transcription units are likely 
to modify the expression of neighbouring genes. 
Further insights have been acquired by removing 
the entire HoxC locus, including both the lncRNA 
locus and flanking genes (Suemori and Noguchi, 
2000; Schorderet and Duboule, 2011). Even when 
multiple alleles are available, as for Hotair, lncRNA 
function remains difficult to evaluate.

Expression specificity and  
allelic series
Deletion of the mouse Hotair lncRNA also induced 
a subtle developmental phenotype in the wrist 
(Li et al., 2013). However, because murine Hotair 
transcripts were not detected in developing fore-
limb buds (Schorderet and Duboule, 2011) it 
remains possible that this phenotype develops 
from a lack of Hotair RNAs during subsequent 
stages of wrist development. This possibility 
could only be assessed by further analysis of the 
expression pattern of this lncRNA. The systematic 
introduction of a reporter cassette into lncRNAs 
(Sauvageau et al., 2013) can help solve this 
problem, provided the difference between the 
stability of the reporter staining and the half-life 
of the RNA is kept in mind, in particular for small 
and dynamic cell populations (Zakany et al., 2001).

http://dx.doi.org/10.7554/eLife.03058
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Figure 3. Human and mouse ENCODE data indicate that Mdgt−/− lines contain deletions of conserved binding sites for transcription factors and 
chromatin regulatory proteins. The engineered deletion in mouse, and its equivalent sequence in human, are indicated by red rectangles, and 
spans 85% (12.4 kb of 14.7 kb) of intergenic sequence between mouse Hoxd1 and Hoxd3. Mdgt, virtually shares its start site with Hoxd1, a gene 
expressed with exquisite specificities in only a few cell populations during early development (Zakany et al., 2001). Predicted transcription factor 
binding sites (TFBs) that are conserved in human, mouse and rat are shown against the human genome (Consortium, 2012; Ernst and Kellis, 
2012). Numbers of experimentally-determined TFBs per genomic interval are shown in the histogram, and clusters of DNase 1 hypersensitivity 
sites, are also shown aligned against the human locus. Predicted CpG islands acquired from the UCSC Genome Browser are shown in green, and 
chained human-mouse alignments are shown in olive green. Evolutionary conservation (GERP) scores are indicated below the mouse locus.
DOI: 10.7554/eLife.03058.005

As for protein-coding genes, an exhaustive 
description of functional traits associated with a 
particular lncRNA cannot be achieved by using a 

single mutant allele, hence allelic series are nec-
essary. As indicated above, the nature of the 
alleles required to assess the function of a given 

http://dx.doi.org/10.7554/eLife.03058
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lncRNA depends upon its genomic location and 
its expression specificity during development and 
adulthood. This can be quite challenging, as exem-
plified by the bidirectional Hotdog and Twin of hot-
dog lncRNAs: even though these RNAs are located 
hundreds of kb distant from the HoxD gene cluster 
in the middle of a gene desert, their shared start 
site physically interacts with Hoxd genes as part of a 
general regulatory structure. In this case, a cis-effect 
could in principle be evaluated by separating the 
lncRNA loci from the HoxD cluster via a large 
inversion with a breakpoint in-between. It turns out, 
however, that this inversion globally disrupts the 
regulation of HoxD by displacing long-range acting 
enhancers along with the lncRNA loci, making inter-
pretation difficult (Delpretti et al., 2013).

Discrepancies between different 
strategies
The lncRNA Fendrr has been studied using  
two independent strategies: genetic deletion 
(Sauvageau et al., 2013) and transcriptional 
terminator insertion (Grote et al., 2013). Whilst 
both studies describe a lethal phenotype, high-
lighting the potential importance of this lncRNA 
in development, the outcomes differ. Genetic de-
letion results in lung maturation and mesenchymal 
differentiation defects (Sauvageau et al., 2013), 
whilst terminator insertion leads to heart and 
body wall defects and to effects on the expression 
of the neighbouring Foxf1 gene (Grote et al., 
2013). Importantly, the defects caused by termi-
nator insertion were rescued by a transgene con-
taining a single wild type copy of the Fendrr 
lncRNA locus (without its functional Foxf1 neigh-
bour); this strongly implicates deletion of the RNA 
product, rather than its genomic DNA, as causing 
the observed phenotypes (Grote et al., 2013). 
Transgene rescue experiments are thus crucial for 
establishing RNA-dependent lncRNA function. An 
earlier successful illustration of this principle was the 
rescue of developmental defects in zebrafish by co-
injection of spliced RNA for each of two lncRNAs, 
cyrano and megamind, whose precursor RNAs had 
been knocked down using morpholino antisense 
oligos (Ulitsky et al., 2011). However, regulatory 
sequences necessary for the transcription of the 
lncRNA itself should ideally be included in the res-
cue construct so as to maintain physiological levels 
of expression. This, added to the length of lncRNAs 
that can sometimes reach several hundred kb, may 
represent a challenge for a transgenic approach.

Substantial differences have also been observed 
between RNAi-mediated knockdown and tran-
scriptional terminator insertion at the Evf-2 lncRNA 

locus (Feng et al., 2006; Bond et al., 2009; 
Berghoff et al., 2013; Kohtz, 2014). This lncRNA 
is transcribed across an enhancer element between 
the Dlx5 and Dlx6 genes, and initial studies in cell 
culture using RNAi suggested a model whereby 
Evf-2 was important for activation of Dlx5/6 (Feng 
et al., 2006). However, transcriptional terminator 
insertion in mice has shown the opposite effect 
on expression of Dlx5/6 (Bond et al., 2009) and 
causes specific changes in DNA methylation at 
the enhancer. Importantly these changes can 
be rescued by Evf-2 expression from a separate 
transgene, implying that they are dependent on 
the lncRNA itself (Berghoff et al., 2013).

Similarly to this example, knockdown of  
lincRNA-p21 by RNAi originally suggested a 
trans-acting mechanism, in which the lncRNA was 
involved in recruiting protein complexes to chro-
matin (Huarte et al., 2010). Nevertheless, subse-
quent studies where the promoter of the lncRNA 
was deleted or its transcription was blocked by 
antisense oligonucleotides have highlighted a 
different role, as this lncRNA regulates the adja-
cent p21 gene in cis, without having trans-acting 
effects (Dimitrova et al., 2014). Whilst both 
studies analysed by RNAseq the effect of lncRNA 
depletion on global gene expression in mouse 
embryonic fibroblasts, the two sets of differentially 
expressed genes did not overlap significantly. 
When analysing lncRNA function, it is thus impor-
tant to consider multiple loss-of-function strate-
gies that address multiple mechanisms of action.

The potential confounding effects of techniques 
used to separate DNA- from RNA-dependent 
function are further exemplified by studies of 
the Drosophila bxd lncRNA, which is expressed 
from within the HOX cluster, adjacent to the 
Ultrabithorax (Ubx) gene. Its expression is highly 
specific and occurs in the same broad region of 
the embryo as the Ubx gene, although notably 
never within the same cell (Petruk et al., 2006). 
Studies of bxd loss-of-function using different 
techniques have yielded conflicting interpretations. 
It has long been known that small deletions within 
this lncRNA cause dramatic effects on expression 
of the neighbouring Ubx gene (Lewis, 1978), 
resulting in homoeotic transformations. Indeed, 
certain allelic combinations are able to generate 
a four-winged fly. More recent studies of the 
same deletions suggest that the act of transcrip-
tion of this lncRNA represses Ubx in cis by alter-
ing protein binding to the Ubx promoter (Petruk 
et al., 2006). In contrast, it was reported that inver-
sion of the bxd promoter, driving transcription in 
the wrong direction whilst maintaining genomic 
composition, results in very minor effects on Ubx 
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expression, and then only later in development 
(Pease et al., 2013). Also, a deletion removing 
the promoter induced a Cdx-like gain of function 
of Ubx (Sipos et al., 2007). Clearly, correct inter-
pretation of such loss-of-function experiments, at 
such complex loci, requires careful consideration 
of potentially confounding factors.

Contrasting results of different experiments 
may also arise because of a lncRNA's involvement 
in different mechanisms in different cellular con-
texts. For example, in embryonic cells, transcrip-
tion of Airn silences the adjacent Igf2r gene 
(Latos et al., 2012), whereas in extraembryonic 
tissues it acts more distally by recruiting the his-
tone methyltransferase G9a to imprinted genes 
(Nagano et al., 2008).

The end of the beginning: a 
maturing lncRNA field
The study of lncRNAs is still in its infancy, and the 
biochemical and genetic techniques used to 
address the true significance and mechanisms of 
action of this class of RNA have only recently 
been developed or adapted from those used for 
investigating protein-coding genes. Such tech-
niques must therefore be used with caution and 
with appropriate controls (Brockdorff, 2013; Riley 
and Steitz, 2013). From the examples described 
above, it is apparent that the optimal strategy 
with which to study a lncRNA's loss of function 
depends both on the mechanism by which it 
acts, in particular in a cis or trans configuration, 
and the regulatory sequences present within its 
locus. We suggest that early lessons learnt from 
paradigm repressor lncRNAs, such as Xist, and 
imprinted lncRNAs such as Airn or Kcnq1ot1, 
should guide the design of experiments on 
more recently identified lncRNAs. We have 
attempted to distil these lessons into the pro-
posed considerations in Box 1. Introduction of 
the multiple alleles that will be necessary to  
adequately dissect lncRNA in vivo function will 
be greatly aided by recent advances in genome 
engineering using designer site-specific nucle-
ases such as CRISPR/Cas9 and TALENs. The in-
troduction of fast acute loss-of-function systems 
for lncRNAs, for example those that insert a 
sequence-specific ribonuclease site whose nucle-
ase is under drug inducible control, would also 
greatly facilitate lncRNA investigation.

The trans function of a lncRNA may be investi-
gated using locus deletion, promoter deletion, inver-
sions, transcriptional termination or RNAi. Where 
possible, these strategies should be combined with 
genetic rescue experiments, where the lncRNA is 

expressed from an independent transgene inserted 
at a location distinct from the lncRNA locus. This 
strategy separates RNA-dependent effects from 
those arising from the manipulation of the underlying 
DNA. Rescue experiments using expression of the 
lncRNA from an independent transgene are only 
possible for trans-acting lncRNAs where the RNA 
moiety itself and not the act of transcription is 
critical for function.

The cis function of a lncRNA may be investi-
gated using a combination of several alleles, such as 
insertion of transcriptional terminators, promoter 
deletions and inversions. Several alleles are likely 
to be required to separate lncRNA-dependent 
from other effects and, as controls, to reveal arte-
facts of genetic engineering. Engineered inver-
sions can also be used to separate the lncRNA 
locus from its potential neighbouring target gene 
to investigate its roles in cis. Use of site-specific 
recombinases, such as the phiC31/attP system 
(Bateman et al., 2006; Zhu et al., 2014) as 
‘landing sites’ or for recombination mediated 
cassette exchange, will greatly enhance our ability 
to generate such allelic series. For example, the 
lncRNA locus may be deleted and replaced by a 
recombinase ‘landing site’ into which different 
constructs can be introduced to investigate 
phenotype rescue.

In summary, if lncRNA biologists are to resolve 
the true in vivo functions of these numerous and 
enigmatic transcripts, then the strengths and 
weaknesses of available techniques will need  
to be acknowledged. Resolution will no doubt 
derive from the careful and comprehensive ge-
netic dissection of individual loci using multiple 
alleles. The field of lncRNA biology would ben-
efit greatly from the development of additional 
approaches that are effective in distinguishing 
effects mediated by lncRNAs as molecular spe-
cies from their effect on gene regulatory ele-
ments with which lncRNA loci are interleaved 
across the mammalian genome.
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