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Transient elevations in cytoplasmic Ca2+ trigger a multitude of Ca2+-dependent processes in CNS neurons
and many other cell types. The specificity, speed, and reliability of these processes is achieved and ensured
by tightly restricting Ca2+ signals to very local spatiotemporal domains, ‘‘Ca2+ nano- and microdomains,’’ that
are centered around Ca2+-permeable channels. This arrangement requires that the Ca2+-dependent effectors
reside within these spatial boundaries where the properties of the Ca2+ domain and the Ca2+ sensor of the
effector determine the channel-effector activity. We use Ca2+-activated K+ channels (KCa) with either micro-
molar (BKCa channels) or submicromolar (SKCa channels) affinity for Ca2+ ions to provide distance constraints
for Ca2+-effector coupling in local Ca2+ domains and review their significance for the cell physiology of KCa

channels in the CNS. The results may serve as a model for other processes operated by local Ca2+ domains.
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Introduction
In CNS neurons and many other cell types, intracellular calcium

ions (Ca2+) trigger a wide variety of Ca2+-dependent signaling

events and reaction cascades—sometimes with even opposing

effects on cellular functions. To selectively orchestrate such

a potentially complex range of Ca2+-dependent reactions, the

Ca2+ signal is precisely localized in time and space; the intracel-

lular Ca2+ concentration ([Ca2+]i) is increased only for short pe-

riods of time and at spatially restricted domains. Such ‘‘local

Ca2+ signaling domains’’ are generated by a variety of different

Ca2+ buffer systems (mobile and immobile or fixed Ca2+-bind-

ing systems) that limit the diffusion of Ca2+ ions after they

have entered the cell through Ca2+-permeable channels,

mostly voltage-gated Ca2+ (Cav) channels (reviewed in detail

by Augustine et al., 2003; Neher, 1998). In addition, the signal-

ing systems that are fueled by Ca2+ are localized in close spatial

proximity to the Ca2+-permeable channels. This may be en-

dowed either by direct physical association of the Ca2+ source

and the Ca2+-dependent target or by tethering the source and

the target via specialized intermediary linkers or scaffolding

proteins.

Experimentally, local Ca2+ signaling may be assessed by the

Ca2+ chelators EGTA and BAPTA that compete for Ca2+ with

the cellular Ca2+-dependent targets. Both of these mobile Ca2+

buffers have similar steady-state binding affinities for Ca2+; how-

ever, they largely differ in their binding rate constants, with

BAPTA being about 150 times faster than EGTA (Naraghi and

Neher, 1997). Accordingly, BAPTA is considerably more effec-

tive in preventing diffusion of free Ca2+ away from the entrance

site at the plasma membrane; the concentration profile of free

Ca2+ that is established at the cytoplasmic mouth of an open

Ca2+-permeable channel in the presence of BAPTA declines

much more steeply with distance than the profile generated by

equal concentrations of EGTA (see red and green lines in Fig-

ure 1; Matveev et al., 2004; Neher, 1986, 1998).
Based on these distinct characteristics, Neher (1998) and

Augustine et al. (2003) proposed a BAPTA/EGTA-derived classi-

fication for local Ca2+ signaling domains: (1) processes that are

effectively interfered with by BAPTA, but not EGTA, are placed

in ‘‘Ca2+ nanodomains’’ (within �20–50 nm of the Ca2+ source),

while (2) processes that are equally sensitive to BAPTA and

EGTA are located in ‘‘Ca2+ microdomains’’ (at distances be-

tween 50 nm and a few hundred nanometers from the Ca2+

source).

In either type of local Ca2+ domain, the magnitude and speed

of the Ca2+ signal are inversely related to the distance between

the Ca2+ source and the Ca2+ sensor, although on different

scales. Thus, the peak [Ca2+]i in nanodomains is about ten times

higher than in microdomains (�100 mM versus 1–5 mM), and the

rise and decay of the Ca2+ signal takes microseconds in Ca2+

nanodomains, while it occurs on the millisecond timescale in

Ca2+ microdomains (Neher, 1986).

We will use examples from the two classes of Ca2+-activated

K+ (KCa) channels that have distinct intrinsic affinities for Ca2+,

the voltage- and Ca2+-activated large conductance K+ (BKCa)

channels and the Ca2+-activated small conductance K+ (SKCa)

channels, as well as the recent results from proteomic and bio-

chemical analyses of these two channel types to review the char-

acteristics of channel gating by local Ca2+ signaling domains. We

will survey distance constraints for coupling between KCa and

Ca2+ sources for both BKCa and SKCa channels and discuss their

relevance for the biology of these channels in the CNS.

Local Ca2+ Signaling and BKCa Channels
BKCa channels are involved in a diversity of physiological pro-

cesses ranging from regulation of smooth muscle tone to modu-

lation of neurotransmitter release (reviewed by Latorre and Brau-

chi, 2006; Sah and Faber, 2002; Vergara et al., 1998). In central

neurons, where they are expressed throughout most regions of

the mammalian brain (Sausbier et al., 2005), BKCa channels
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Figure 1. Prototypic Ca2+ Nanodomain:
Bimolecular Complexes of BKCa and Cav
Channels
Complex formation between BKCa and Cav chan-
nels guarantees [Ca2+]i sufficiently high for reliable
activation of BKCa at physiological voltages.
BAPTA (R5 mM) interferes with functional cou-
pling within the complex, while EGTA is ineffective
(Berkefeld et al., 2006). The Ca2+ concentration
profile at the cytoplasmic opening of the Cav sub-
unit of the BKCa-Cav complex in the presence of
5 mM EGTA (green line) or 5 mM BAPTA (red line)
was simulated with the CalC software v. 5.4.0
(Matveev et al., 2004); parameters used: Cav sin-
gle-channel conductance of 1.7 pS, driving force
for Ca2+ of 60 mV, channel opening of 1 ms, spher-
ical geometry with a radius of 5 mm; binding con-
stants and diffusion coefficients for both chelators
were taken from Naraghi and Neher (1997).
Dashed lines indicate the distance from the center
of the Cav channel where the concentration of free
Ca2+ drops below 10 mM, the threshold of [Ca2+]i
required for robust activation of BKCa in the phys-
iological voltage range. For simplicity reasons,
only one Cav channel was illustrated, although
the subunit stoichiometry of BKCa-Cav complexes
remains to be elucidated.
predominantly serve the following functions: they contribute to

repolarization of the action potential (AP) (Storm, 1987a), medi-

ate the fast phase of the afterhyperpolarization (fAHP) following

an AP (Adams et al., 1982; Lancaster and Nicoll, 1987; Storm,

1987a), shape the dendritic Ca2+ spikes (Golding et al., 1999),

and influence the release of neurotransmitters (Lingle et al.,

1996; Petersen and Maruyama, 1984; Raffaelli et al., 2004; Robi-

taille et al., 1993). All of these CNS functions are fundamentally

related to the unique gating of BKCa channels: they are activated

by the cooperative effects of two distinct stimuli, membrane de-

polarization and cytoplasmic Ca2+. Both stimuli converge allo-

sterically on the gating apparatus of the channels, with increas-

ing Ca2+ concentrations shifting the activation curve from highly

positive potentials (>100 mV) into the physiological voltage range

(Cui et al., 1997; Latorre et al., 1982; Marty, 1981). Robust acti-

vation of BKCa channels at membrane potentials around 0 mV re-

quires values for [Ca2+]i of R 10 mM (Brenner et al., 2000), as are

known to only occur in the immediate vicinity of active Ca2+ sour-

ces, particularly Cav channels. In most CNS neurons (and their

subcellular compartments) where BKCa channel activation has

been studied, the increase in [Ca2+]i and membrane depolariza-

tion were coincidentally provided during the short duration of an

AP. As we will discuss below, this imposes several spatial, tem-

poral, and molecular constraints on the interaction between

BKCa channels and their Ca2+ sources.

BKCa channels are tetramers of pore-forming BKa subunits

that share the six-segment transmembrane (TM) topology of

voltage-gated K+ (Kv) channels, including the voltage-sensor do-

main (Adelman et al., 1992), but contain an additional TM domain

at the N terminus (Meera et al., 1997). The cytoplasmic C termi-

nus of BKa that comprises roughly two-thirds of the protein and

is subjected to extensive pre-mRNA splicing and protein

phosphorylation (Shipston, 2001; Yan et al., 2008) contains two

regulating conductance of K+ (RCK) domains and a string of

aspartate residues known as the ‘‘Ca2+ bowl’’ (Schreiber and

Salkoff, 1997). The tertiary folding of these domains is assumed
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to reconstitute a binding site for Ca2+ with micromolar affinities

(Kd of 1–10 mM); binding of Ca2+ to this cytoplasmic site, in con-

cert with depolarization, provides the energy required for open-

ing of the channel pore in the membrane plane (Jiang et al., 2001,

2002; Xia et al., 2002; Yusifov et al., 2008). In addition, the gating

properties of neuronal BKCa channels are influenced by auxiliary

BKb subunits (Knaus et al., 1994), two-TM domain proteins that

modulate channel activation (time course and voltage depen-

dence, BKb2, 4) (Brenner et al., 2000; Uebele et al., 2000) and/

or endow BKCa channels with a ‘‘ball-type’’ inactivation process

(BKb2) (Bentrop et al., 2001; Wallner et al., 1999; Xia et al., 1999).

BKCa Channels Form Macromolecular Complexes

with Cav Channels and Establish a Prototypic Ca2+

Nanodomain

Investigations of BKCa channels in various types of neurons

showed that the activation of BKCa channels requires the delivery

of Ca2+ through Cav channels, as blocking these channels in-

hibits BKCa-mediated currents equally as well as removal of

Ca2+ from the extracelluar milieu. In fact, Cav channel subtype-

specific peptide toxins or reagents identified a set of Cav

channels able to fuel BKCa channels: L-type (Prakriya and Lingle,

1999; Storm, 1987a), P/Q-type (Edgerton and Reinhart, 2003;

Prakriya and Lingle, 1999; Womack et al., 2004), and N-type

channels (Marrion and Tavalin, 1998). Additionally, the greater

ability of BAPTA compared to EGTA to interfere with BKCa chan-

nel gating strongly suggested nanometer distances between the

BKCa and Cav channels (Lancaster and Nicoll, 1987; Muller et al.,

2007; Roberts, 1993; Storm, 1987b). The molecular mechanism

linking the two types of channels has recently been resolved.

A proteomic approach that combined affinity purification with

mass spectrometry showed that BKCa channels in the mamma-

lian brain (composed of BKa and BKb2/4) may exist in high-mo-

lecular weight complexes (�1.6 MDa) and identified several

Cava1 and Cavb subunits that abundantly copurified with BKa-

specific antibodies (Berkefeld et al., 2006). The Cava1 subunits

identified by mass spectrometric analyses were Cav1.2,
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encoding the pore-forming subunit of L-type channels, and

Cavs2.1 and 2.2, the molecular correlates of P/Q- and N-type

channels (Catterall et al., 2005). Subsequent biochemical analy-

ses of heterologously reconstituted BKCa-Cav complexes

indicated that Cav and BKCa channels physically coassemble

predominantly through their a subunits and that complex forma-

tion is Cav subtype specific, as Cav2.3, the correlate of R-type

channels, failed to form stable macromolecular complexes

with BKCa channels (Berkefeld et al., 2006).

When investigated in patch-clamp experiments, the heterolo-

gously expressed BKCa-Cav complexes displayed functional

properties indistinguishable from those recorded from native

cells under similar conditions (Berkefeld et al., 2006; Roberts,

1993). The current output of the complexes in response to step

depolarizations was biphasic: an initial inward current carried

by Ca2+ was followed by an outward K+ current, reflecting the

Cav channel that fuels the coassembled BKCa channel. Similar

to neuronal cells, BKCa-Cav coupling occurred in the submilli-

second range and was insensitive to EGTA even at concentra-

tions as high as 10 mM (Berkefeld and Fakler, 2008; Berkefeld

et al., 2006; Roberts, 1993; Yazejian et al., 2000). In contrast to

the slow buffer EGTA, the K+ current output of BKCa-Cav com-

plexes was effectively diminished by millimolar concentrations

of the fast chelator BAPTA (R5 mM) (Berkefeld et al., 2006),

indicating that functional coupling in these channel-channel

complexes obeyed the rules of Ca2+ nanodomains.

Figure 1 summarizes the molecular picture for assembly and

functional properties of native and reconstituted BKCa-Cav

complexes. Assuming a diameter for BKCa and Cav channels

of�10 nm, based upon the recently determined crystal structure

of the Kv1.2 channel (Long et al., 2005), the cytoplasmic open-

ing of the Cav channel and the Ca2+-binding domain of the

BKCa channel should be separated by at least this distance. In

an EGTA-shaped Ca2+ concentration gradient, this distance en-

sures robust BKCa channel activity, equivalent to values for [Ca2+]i
of R 10 mM (Berkefeld and Fakler, 2008; Berkefeld et al., 2006). In

contrast, in a BAPTA-shaped concentration profile, activity of

BKCa channels is reduced, indicating that [Ca2+]i drops to values

below the 10 mM threshold (Berkefeld et al., 2006). When these

experimental results are compared with theoretical Ca2+ concen-

tration gradients (based on Ca2+ influx, Ca2+-binding kinetics,

and diffusion of the chelator; red and green lines in Figure 1), there

is reasonable agreement, as illustrated by the concentration-

distance boundaries (dashed lines in Figure 1).

Thus, the macromolecular BKCa-Cav complexes that physi-

cally link a Ca2+ source and a Ca2+-dependent effector may be

regarded as prototypic Ca2+ nanodomains that provide experi-

mentally verified criteria defining this type of local Ca2+ domain

(see Introduction): (1) metric extension in the 10 nm range and

(2) high BAPTA/EGTA efficacy for interference with the Ca2+-

mediated signaling.

Output of BKCa-Cav Complexes Is Tuned by the Distinct

Cav Subunit

Formation of macromolecular complexes between BKCa and

Cav channels (1) provides a simple mechanism for reliably deliv-

ering micromolar [Ca2+]i to BKCa channels without affecting other

Ca2+-dependent signaling processes and (2) puts the activity of

BKCa channels under tight control of the Cav partner. The impact
of this Cav control over BKCa extends beyond reliable activation

of BKCa channels and became evident from the K+ current output

of two distinct BKCa-Cav complexes, BKCa-Cav2.1 and BKCa-

Cav1.2, reconstituted in heterologous expression systems.

When stimulated with voltage pulses, BKCa channels (hetero-

mers of BKa and BKb4) coassembled with Cav2.1 channels ac-

tivated markedly faster and at more negative membrane poten-

tials than BKCa channels in complex with Cav1.2 channels, in line

with the distinct gating properties of the two different Cav sub-

types (Berkefeld and Fakler, 2008). Even more pronounced dif-

ferences were observed with AP-like voltage commands of vari-

able duration. While BKCa-Cav2.1 complexes provided robust K+

currents even for APs with half-widths as short as 1 ms and over

roughly two-thirds of the repolarization phase of the AP, BKCa-

Cav1.2 complexes only responded to APs with half-widths lon-

ger than 1.8 ms and mediated K+ currents for markedly shorter

periods during the AP repolarization (Berkefeld and Fakler,

2008). According to these observations, the output characteris-

tics of a particular BKCa channel are determined by the associ-

ated Cav subtype, offering a molecular mechanism to fine-tune

the repolarizing K+ current response and adapt BKCa channels

to the requirement of particular neurons or subcompartments

of neurons. In line with these results, BKCa channels were found

to be predominantly fueled by P/Q-type Cav channels in cerebel-

lar Purkinje cells with their narrow spikes and pronounced fAHPs

(Edgerton and Reinhart, 2003; Womack et al., 2004), while in

chromaffin cells, where APs typically last a few milliseconds,

BKCa channels partner with both L-type and P/Q-type Cav chan-

nels (Berkefeld et al., 2006; Prakriya and Lingle, 1999).

BKCa-Cav Complexes and Uncomplexed BKCa Channels

in CNS Neurons

There appears to be two classes of BKCa channels in neurons:

those tightly associated with Cav channels in Ca2+ nanodomains

and those located more distantly from Ca2+ sources. The latter

population corresponds to Cav-free BKCa channels and reflects

the fact that BKCa and Cav channels may be integrated into com-

plexes (most likely in the endoplasmic reticulum) but may also be

trafficked to the plasma membrane independently of each other.

While discussion of the range of examples is beyond the scope

of this review, we will focus more on the two general categories

of BKCa channels, as well as on reports that have elucidated both

coupling to the Ca2+ source and the related physiology.

Nanodomain BKCa-Cav coupling as derived from high-capac-

ity Ca2+ buffering was reported for BKCa channels and different

Cav channel subtypes in several types of neuronal cells, includ-

ing mammalian hippocampal pyramidal cells (L-type channels

[Lancaster and Nicoll, 1987; Storm, 1987a, 1987b] and N-type

channels [Marrion and Tavalin, 1998]), mammalian cerebellar

Purkinje cells (P/Q-type channels [Edgerton and Reinhart,

2003; Womack et al., 2004]), frog hair cells (L- and N-type chan-

nels [Roberts, 1993, 1994; Roberts et al., 1990]), frog peripheral

axonal terminals (N-type channels [Robitaille et al., 1993; Sun

et al., 2004; Yazejian et al., 1997, 2000]), and mammalian chro-

maffin cells (P/Q- and L-type channels [Prakriya and Lingle,

1999; Prakriya et al., 1996; Solaro et al., 1995]). In these exam-

ples, BKCa channels are reliably activated by the short depolar-

ization of an AP, similar to the results with reconstituted BKCa-

Cav complexes (Berkefeld and Fakler, 2008), reinforcing the
Neuron 59, September 25, 2008 ª2008 Elsevier Inc. 875



Neuron

Review
idea that BKCa and Cav channels are coassembled. As a result of

the AP-triggered depolarization and influx of Ca2+ through cou-

pled Cav channels, BKCa channels provide a K+ conductance

that contributes to repolarization of the AP and gives rise to the

fAHP of the membrane potential (Lancaster and Nicoll, 1987;

Storm, 1987a, 1987b). The contribution to AP repolarization

and generation of the fAHP are readily revealed upon blocking

BKCa channels (with TEA, peptide toxins, or paxilline) that

broadens the APs and selectively abolishes the fAHP, and, as

a consequence, changes the neuronal firing pattern (Edgerton

and Reinhart, 2003; Lancaster et al., 1991; Shao et al., 1999;

Storm, 1987a). Interestingly, in CA1 neurons, the BKCa-mediated

effects are apparent early in a train of APs, but, as the train prog-

resses, BKCa channels successively inactivate, presumably in-

duced by the coassembled BKb2 subunit, when the frequency

of AP-triggered channel activation exceeds the rate of recovery

from inactivation. This reduces the number of available BKCa

channels, similar to their block by exogenous agents (Shao

et al., 1999), and results in AP broadening and reduction of the

fAHP during a train of APs. In presynaptic terminals, the BKCa-

mediated repolarization of the AP exerts an additional effect

closely related to the role of [Ca2+]i in triggering membrane fusion

of synaptic vesicles and transmitter release. Presynaptic BKCa

channels curtail the opening of Cav channels, thereby terminat-

ing the Ca2+ influx and, hence, the release of neurotransmitters

by decreasing [Ca2+]i below the threshold for vesicle fusion.

This BKCa-based negative feedback mechanism contributes to

precise timing of synaptic transmission and prevents overexcita-

tion (Pattillo et al., 2001; Raffaelli et al., 2004; Robitaille et al.,

1993).

Distinct from localization in Ca2+ nanodomains, BKCa channels

may also be operated by more distant Ca2+ sources or by

a global increase in [Ca2+]i. Thus, in chromaffin cells, BKCa chan-

nels were readily inhibited by submillimolar concentrations of

EGTA (Prakriya and Lingle, 2000; Prakriya et al., 1996), and, in

axon terminals of CA3 pyramidal cells, BKCa channels were

only activated upon an increase in [Ca2+]i markedly beyond

that triggered by single APs (Hu et al., 2001). Although the phys-

iological significance of these uncomplexed BKCa channels is

not yet fully understood, a role as an ‘‘emergency brake’’ has

been hypothesized, preventing cell damage or apoptosis under

pathophysiological conditions that result in an extraordinarily

large Ca2+ transient (Hu et al., 2001).

Ca2+ Signaling and SKCa Channels
SKCa are widely expressed in the CNS, where they are important

for intrinsic excitability and pacemaking (Wolfart et al., 2001),

dendritic integration (Cai et al., 2004), and shaping postsynaptic

responses (Ngo-Anh et al., 2005), as well as modulating (Stack-

man et al., 2002) and contributing to synaptic plasticity (Lin et al.,

2008). In different neuronal cell types and even within different

subcellular compartments of the same neurons, SKCa channels

may be gated by elevations of [Ca2+]i mediated by different clas-

ses of Ca2+ sources, and, in this sense, they differ from the tight

coupling between Cav and BKCa channels discussed above. In

many but not all cases, SKCa channel activity feeds back to the

Ca2+ source and limits Ca2+ influx, thereby shaping the ampli-

tude and duration of the Ca2+ transient and influencing the

876 Neuron 59, September 25, 2008 ª2008 Elsevier Inc.
many downstream signaling pathways that are affected by ele-

vated cytoplasmic Ca2+ levels.

SKCa Channels Use Calmodulin as a High-Affinity

Ca2+ Sensor

SKCa channels are gated solely by intracellular Ca2+ ions. Al-

though they share the six-transmembrane serpentine topology

of Kv channels (Kohler et al., 1996), SKCa channels lack voltage

dependence to their open probability even at extreme mem-

brane potentials, in contrast to their large conductance BKCa

cousins (Hirschberg et al., 1998). All four members of the

SKCa channel family share a conserved gating mechanism.

SKCa channels are heteromeric complexes of the four SKCa

pore-forming a subunits and calmodulin (CaM), with each

a subunit harboring a constitutively bound CaM. When Ca2+

ions bind to the N lobe EF-hands of CaM, a conformational

change is induced in the SKCa channel complex that opens

the gate of the channel; deactivation reflects Ca2+ unbinding

(Keen et al., 1999; Xia et al., 1998b). SKCa channel activity

shows a steep dependence upon [Ca2+]i with a Hill coefficient

of�4 and an EC50 of�0.5 mM. The use of CaM as a Ca2+ sensor

endows SKCa channels with an intrinsically higher affinity for

Ca2+ than the BKCa channels. However, the SKCa channel

opening that involves conformational changes communicated

between CaM and the SKCa a subunits is slower than the open-

ing of BKCa channels; when SKCa channels are rapidly exposed

to saturating [Ca2+]i, the activation time constants are �5 ms,

while deactivation upon rapid return to Ca2+-free solution

occurs with time constants of �30 ms (Pedarzani et al., 2001;

Xia et al., 1998a).

SKCa Ca2+ Gating Is Modulated by Protein

Phosphorylation

The Ca2+ sensitivity of SKCa channels is finely regulated by

protein kinase CK2 and protein phosphatase 2A (PP2A) that, in

addition to CaM, are also constitutively bound components of

the SKCa channel complex (Allen et al., 2007; Bildl et al., 2004).

SKCa-bound CK2 does not phosphorylate the channel a sub-

units. Rather, CK2 phosphorylates SKCa-bound CaM at position

T80, reducing the apparent Ca2+ sensitivity of the channels and

shifting the EC50 and Hill coefficient to �2 mM and 2, respec-

tively. Inhibiting CK2, which allows SKCa-bound PP2A to fully

dephosphorylate SKCa-bound CaM, shifts the EC50 and Hill co-

efficient to �0.3 mM and >4, respectively. The effects of CK2

and PP2A are reflected in the channel kinetics; when CK2

phosphorylates SKCa-bound CaM, the deactivation rates are

�4-fold faster than for the unphosphorylated channels (Allen

et al., 2007; Bildl et al., 2004). Moreover, the ability of CK2 to

phosphorylate SKCa-bound CaM is state dependent, occurring

only when the channels are in the closed state (Allen et al.,

2007). This state dependence adds an additional level of Ca2+

regulation to the SKCa channels; the Ca2+-dependent gating ap-

paratus becomes itself Ca2+ dependent and will be dynamically

tuned as the local Ca2+ concentration changes. Indeed, during

a Ca2+ transient, while the concentration of Ca2+ in the microen-

vironment of the SKCa channels is changing, the Ca2+ sensitivity

of the channels will rapidly slide along the concentration gradient

(Figure 3).

Recent results show that CK2/PP2A tuning of SKCa channels

mediates neurotransmitter modulation of SKCa currents
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Figure 2. Ca2+ Nano- or Microdomain:
Colocalization of SKCa and Ca2+-Permeable
Channels
Colocalization of Ca2+ source and SKCa channel
complexes composed of SKa, CaM, protein
kinase CK2, and protein phosphatase 2A. Ca2+

profiles are as in Figure 1. Dashed lines indicate
the distance of the [Ca2+]i threshold of 1 mM re-
quired for robust activation of SKCa. For simplicity
reasons, only one Ca2+ source was illustrated.
(Maingret et al., 2008). In recordings from microvesicles pre-

pared from sympathetic superior cervical ganglion neurons, sin-

gle SKCa channel openings were fueled by Ca2+ influx through ei-

ther endogenous N- or transfected R-type Cav channels.

Noradrenaline application inhibited SKCa channels, apart from

effects on the Cav channels, and inhibition was due to decreased

Ca2+ sensitivity of the SKCa channels mediated by CK2 phos-

phorylation of SKCa-associated CaM. Similar regulation of

SKCa channels was shown in small, dorsal root ganglion cells,

putative nociceptors where norepinephrine application in-

creased excitability, increasing the number of action potentials

elicited by a given current injection.

Even the fully dephosphorylated form of the SKCa channels,

with an EC50 �0.3 mM, does not reflect the maximal Ca2+ sensi-

tivity endowed to SKCa channels by the CaM Ca2+ sensor (Allen

et al., 2007; Bildl et al., 2004). This is revealed by application of

compounds such as 1-EBIO (1-ethyl-2-benzimidazolinone) or

NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime), which de-

crease the EC50 for Ca2+ by almost another order of magnitude

to �0.07 mM. These compounds are not true activators because

they are ineffective in the absence of Ca2+; rather, they act on the

Ca2+ gating apparatus, primarily slowing the deactivation rate of

the channels by stabilizing the Ca2+-CaM-SKCa interaction (Ped-

arzani et al., 2001). The effects of the physiologically relevant

CK2/PP2A and the drugs 1-EBIO and NS309 illustrate that

SKCa channels are exquisitely poised to respond to physiological

fluctuations of [Ca2+]i and that the intrinsic apparent affinity of

Ca2+ gating may be modulated.

SKCa channels are not directly coassembled with their Ca2+

sources (Figure 2). Unlike BKCa channels, where there may be

a single coassembled Cav channel fueling a single BKCa channel,

SKCa channels likely are contained within a microdomain with

more than a single Ca2+ source providing the Ca2+ for SKCa

channel activation. Due to their intrinsically higher Ca2+ sensitiv-

ity, SKCa channels may be located as far as several tens of

nanometers away from the Ca2+ sources that are still capable

of providing essentially saturating [Ca2+]i at rates that are faster

than the intrinsic activation kinetics of the SKCa channels (Fig-

ure 2). Similarly, the decay of the local Ca2+ transient occurs

faster than the closing rate of the SKCa channels. Therefore, in

many but not all cases, SKCa channel gating itself becomes

rate limiting (Cueni et al., 2008; Marrion and Tavalin, 1998; Oliver

et al., 2000).
SKCa Channels Are Coupled to Different Ca2+ Sources

L-type Cav Channels and SKCa Channels. The first study that

demonstrated a direct, discrete coupling between a Ca2+ source

and SKCa channel activity was from acutely dissociated CA1 hip-

pocampal pyramidal neurons (Marrion and Tavalin, 1998). Using

somatic, cell-attached patch recordings of single-channel activ-

ities, depolarizing commands elicited brief Ca2+ inward currents

through L-type Cav channels that were frequently followed by

outward-going K+ currents mediated by SKCa channels. Both

Cav and SKCa channel openings were abolished by nimodipine,

suggesting that, in isolated CA1 neurons, somatic L-type channels

supply the Ca2+ to activate SKCa channels. Moreover, the latency

between Cav and SKCa channel openings was consistent with the

activation time constant obtained for cloned SK2 channels at

a [Ca2+]i of 1 mM. These data confirm the spatial relation between

Ca2+ source and SKCa channel illustrated in Figure 2. Based upon

the EGTA/BAPTA-shaped Ca2+ concentration profiles and the

known Ca2+ sensitivity of SKCa channels, a concentration of�1 mM

is expected at a distance of 20–100 nm from the internal mouth

of the Cav channel (Figure 2), providing a metric for the distance

separating the two channel types in acutely isolated CA1 neu-

rons. This estimate was reinforced by the ability of the rapid,

high-affinity Ca2+ buffer BAPTA to reduce the coupling between

L-type Cav channels and SKCa channels (Marrion and Tavalin,

1998).

Acetylcholine Receptors and SKCa Channels. Auditory outer

hair cells (OHCs) present a unique inhibitory synapse that uses

excitatory Ca2+-permeable nicotinic acetylcholine receptors

(nAChRs), including the a9/a10 subunits, for fast inhibitory

synaptic transmission (Elgoyhen et al., 2001; Oliver et al., 2001;

Vetter et al., 1999); Ca2+ that enters the postsynaptic hair cell

through nAChRs activates SK2 channels, which, in turn, provide

a repolarizing and, hence, inhibitory K+ conductance (Oliver

et al., 2000; Yuhas and Fuchs, 1999). The activation and decay

time course of the unitary IPSCs of this synapse are shaped by

the activation/deactivation kinetics of SK2 channels (Bildl

et al., 2004; Oliver et al., 2000). Thus, the kinetics of OHC IPSCs

and K+ currents recorded upon rapid application of 10 mM Ca2+

to heterologously expressed, low-affinity SK2-phospho-CaM

channels in inside-out patches were virtually identical, and appli-

cation of 1-EBIO increased the IPSC decay time constant to

a similar extent as the deactivation of SK2 channels (Bildl

et al., 2004; Oliver et al., 2000; Pedarzani et al., 2001; Xia et al.,
Neuron 59, September 25, 2008 ª2008 Elsevier Inc. 877
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1998b). Finally, dialysis of OHCs with the fast Ca2+ buffer BAPTA

(5 mM), but not EGTA (5 mM), reduced the amplitude of IPSCs

without altering their kinetics (Oliver et al., 2000). Together, the

properties of the nAChR-SK2 coupling show that, in OHCs,

both types of channels are packaged into a Ca2+ nanodomain,

with at least some channels residing within 15–20 nm of each

other (Figure 2). Functionally, this spatial arrangement of a rapidly

gating Ca2+ source and SKCa channels (onset/decay of nAChR

currents faster than the activation/deactivation of SK2 channels)

recapitulates an inhibitory synapse with transmission kinetics

similar to those of the classical GABAergic or glycinergic synap-

ses (Jonas et al., 1998; Jones and Westbrook, 1996; Takahashi

and Momiyama, 1991).

NMDA Receptors, R-Type Ca2+ Channels, and SKCa Channels.

In CA1 neurons, SK2 channels are expressed throughout the

dendrites where they are fueled by Cav channels (Cai et al.,

2004), while, in dendritic spines, SK2 channels are activated by

synaptically evoked Ca2+ influx through NMDA-type glutamate

receptors (NMDAr) and R-type Cav channels (Bloodgood and

Sabatini, 2007; Ngo-Anh et al., 2005). The repolarizing influence

of spine SK2 channels shunts the depolarization mediated by

AMPA-type glutamate receptors. As a consequence, the EPSP

is decreased, the voltage-dependent Mg2+ block of NMDAr is re-

instated, and R-type Cav channels deactivate, which attenuates

the spine Ca2+ transient (Bloodgood and Sabatini, 2007; Ngo-

Anh et al., 2005). Whole-cell dialysis with BAPTA (5 mM), but

not with the same concentration of EGTA, effectively turned

down coupling between NMDAr and SK2 channels, suggesting

that both reside in a nanodomain distance of �20–50 nm (see

Figure 2) within the confined Ca2+ signaling compartment of

the dendritic spine (Ngo-Anh et al., 2005). This conclusion is sup-

ported by double label, postembedding immunogold electron

microscopy that detected SK2 channels and NMDAr within the

postsynaptic density (Lin et al., 2008).

T-Type Ca2+ Channels, SERCA, and SKCa Channels. In the

thalamus, the nucleus reticularis (nRt) is a thin inhibitory network

interposed between thalamocortical projection neurons and the

cortex that is important for information transfer and arousal con-

trol. Low-threshold, T-type Cav currents underlie the rhythmic

burst discharges during neuronal oscillations typical for sleep

(Contreras, 2006; Crunelli et al., 2006). In the dendrites of nRt

neurons, T-type Cav channels are heavily expressed, and Ca2+

influx through T-type channels is the predominant basis for

dendritic Ca2+ transients. Immunogold EM showed that SK2

channels are also expressed in nRt dendrites, and, although de-

polarizing voltage commands evoke an apamin-sensitive current

that is partially blocked by blocking P/Q- and N-type channels,

the Ca2+ activating SK2 channels in dendrites is selectively sup-

plied by T-type channels. The latency between the peak of the

T-type current and the peak of the SK2 current is consistent

with the activation kinetics of the SK2 channels. These results

suggest that the T-type channels in nRt dendrites rapidly supply

saturating [Ca2+]i for SK2 channel activation, and blocking the

SK2 current showed that the repolarizing SK2 channel activity

feeds back to accelerate the deactivation of the T-type channels,

consistent with the role of SK2 channels in promoting oscilla-

tions. The rapid activation of dendritic SK2 channels by Ca2+ enter-

ing through T-type channels suggests that they may be coas-
878 Neuron 59, September 25, 2008 ª2008 Elsevier Inc.
sembled inaCa2+ nanodomain.However,BAPTAandEGTA(5mM)

were equally effective at interrupting the Ca2+ coupling between

the two channel types, suggesting that the SK2 channels and the

T-type Ca2+ channels are more than 75 nm apart (see Figure 2).

Therefore, the rapid coupling is due to a high density of

T-type channels in the long, thin dendrites of nRt neurons that

rapidly give rise to a large, relatively uniform increase in Ca2+

that obviates the need for nanodomain spatial proximity of the

T-type Ca2+ source and the SK2 channel. In addition, in nRt den-

drites, the SK2 current is attenuated by the endoplasmic Ca2+

pump, SERCA. Contrary to expectation, blocking SERCA activity

enhanced and prolonged the SK2 current, and this was due to

blocking the reuptake of Ca2+ into internal stores by SERCA

(Cueni et al., 2008). Thus, in nRt neurons, SK2 channels and

SERCA compete for Ca2+ ions that enter through T-type Ca chan-

nels and thereby shape the Ca2+ transient and oscillatory bursts.

KCa Channels and Endogenous Buffer Systems

The exogenous buffers BAPTA and EGTA, with their distinct

Ca2+-binding properties, are versatile tools for characterizing

the coupling between Ca2+ source and target under standard-

ized conditions and for estimating their spatial arrangement in lo-

cal Ca2+ signaling domains. Physiological Ca2+ buffers, however,

may behave differently and set up local Ca2+ domains with ex-

tensions different than those generated by the exogenous buffer

systems. Several elegant reports have attempted to close this

gap by comparing the buffer capacity of endogenous buffers

to the capacity of EGTA/BAPTA in different cell types using

BKCa channel activity or fluorescence-based Ca2+ imaging

(Jackson and Redman, 2003; Muller et al., 2005, 2007; Roberts,

1993, 1994). Figure 3 illustrates respective Ca2+ profiles gener-

ated by endogenous buffer systems (such as calbindin or parval-

bumin) with the minimal and maximal buffer capacity described

for neuronal cell types together with the derived distance bound-

aries for reliable activation of KCa channels. Accordingly, the

efficacy and range of reliable coupling between Ca2+ source

and KCa are inversely related to the Ca2+ affinity of the respective

channel; while the low-affinity BKCa channels (requiring [Ca2+]i R

10 mM) are robustly activated when located within 10–30 nm of

the Ca2+ source, SKCa channels may reside within roughly 20–

70 nm (low-affinity channels with phospho-CaM, requiring

[Ca2+]i R 5 mM) or between 40 and >200 nm (high-affinity chan-

nels with dephospho-CaM, requiring [Ca2+]i R 1 mM) from the

Ca2+ source. Similar spatial arrangements may be expected for

the interaction between Ca2+ sources and Ca2+-dependent tar-

gets with affinities for Ca2+ comparable to those of KCa channels.

Future Perspectives
The core molecular determinants of BKCa and SKCa channel sig-

naling, including the pore-forming a subunits as well as a range

of stably coassembled b subunits that modulate the effective

Ca2+ sensitivity, alter channel kinetics, or both have been eluci-

dated, and it is likely that more components of these macromo-

lecular signaling complexes will be identified. Moreover, the spa-

tiotemporal relationships between the BKCa and SKCa channels

and their Ca2+ sources are becoming clear. It also seems very

likely that, in addition to the stable interactions between KCa

channels and coassembled modulatory proteins, important as-

pects of KCa signaling will be endowed by effectors that undergo
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Figure 3. Spatial Constraints for the
Coupling between KCa Channels and Ca2+

Sources under Physiological Buffer
Conditions
Distance constraints for reliable activation of BKCa

and SKCa channels under physiological conditions
for Ca2+ buffering. Capacity/efficiency of the en-
dogenous buffer was taken from Roberts (1993)
(red line, annotated as ‘‘maximal’’ buffering, equiv-
alent to 1.6 mM BAPTA) and from Müller et al.
(2005) and Jackson/Redman (2003) (black line,
annotated as ‘‘minimal’’ buffering, equivalent to
�100 mM EGTA) and simulated with the CalC soft-
ware as in Figure 1. For SKCa channels, constraints
were separated with respect to the high-affinity
(CaM fully dephosphorylated, range of activation
represented by the area shaded in gray) and low-
affinity (CaM phosphorylated by CK2, range of ac-
tivation represented by the area shaded in blue)
states for Ca2+ binding. Again, only one Ca2+

source was depicted for simplicity reasons.
only transient, regulated forays into the KCa channel vicinity,

within the signaling nano- or microdomains. Understanding

these additional interactions and their consequences will provide

insights into larger-scale Ca2+ signaling networks.

Precise regulation of the distance between Ca2+ sources and

effectors, exemplified by the BKCa and SKCa models, is likely im-

portant for other fundamental processes in neurons and other

cell types. For example, recent work shows that neurotransmit-

ter release at the basket cell-granule cell synapse in the dentate

gyrus, a process fueled by Ca2+ influx through P/Q-type Cav

channels, is sensitive to BAPTA but insensitive to EGTA, sug-

gesting a close nanodomain coupling between the Cav channels

and the Ca2+ sensor for vesicle exocytosis (Bucurenciu et al.,

2008). This is different than other cortical synapses (Borst and

Sakmann, 1996; Ohana and Sakmann, 1998), and limiting the dif-

fusional component of synaptic delay endows the basket cell-

granule cell synapse with rapid signaling. These findings suggest

that, by regulating the distance between the Ca2+ source and the

Ca2+ sensor, synapses may tune their response kinetics (Rozov

et al., 2001).

Ca2+ is the most widespread and diverse signaling messen-

ger. Undoubtedly, as we develop new tools to more precisely

study the dynamics of Ca2+ nano- and microdomains and their

coupled activities, additional examples and variations will

emerge that will illuminate the cellular and molecular mecha-

nisms that coordinate Ca2+-dependent processes.
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