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SUMMARY

ActivationofK+channelsby theGproteinbg subunits
is an important signaling mechanism of G-protein-
coupled receptors. Typically, receptor-activated K+

currents desensitize in the sustained presence of
agonists to avoid excessive effects on cellular activ-
ity. The auxiliary GABAB receptor subunit KCTD12
induces fast and pronounced desensitization of
the K+ current response. Using proteomic and elec-
trophysiological approaches, we now show that
KCTD12-induced desensitization results from a dual
interaction with the G protein: constitutive binding
stabilizes the heterotrimericGprotein at the receptor,
whereas dynamic binding to the receptor-activated
Gbg subunits induces desensitization by uncoupling
Gbg from the effectorK+ channel.While receptor-free
KCTD12 desensitizes K+ currents activated by other
GPCRs in vitro, native KCTD12 is exclusively associ-
ated with GABAB receptors. Accordingly, genetic
ablation of KCTD12 specifically alters GABAB re-
sponses in the brain. Our results show that GABAB

receptors are endowed with fast and reversible
desensitization by harnessing KCTD12 that inter-
cepts Gbg signaling.

INTRODUCTION

GPCRs and G-protein-regulated ion channels represent funda-

mental cellular signal transduction systems (Brown and Birn-

baumer, 1990; Dascal, 2001; Dunlap et al., 1987; Pierce et al.,

2002; Wickman and Clapham, 1995). GPCRs activate heterotri-

meric G proteins by catalyzing the exchange of GDP for GTP in

Ga, leading to dissociation of Ga$GTP from Gbg. Released

Ga$GTP andGbg have independent capacities to regulate effec-

tors such as enzymes and ion channels. Gbg released from a

variety of GPCRs directly gates G-protein-activated inwardly

rectifying K+ (GIRK or Kir3) channels (Betke et al., 2012; Lüscher
1032 Neuron 82, 1032–1044, June 4, 2014 ª2014 Elsevier Inc.
and Slesinger, 2010) and voltage-activated Ca2+ channels

(Betke et al., 2012; Tedford and Zamponi, 2006), which influ-

ences neuronal activity throughout the brain. Typical examples

of such GPCRs are the GABAB receptors that are activated by

GABA, themain inhibitory neurotransmitter in the CNS (Chalifoux

and Carter, 2011; Gassmann and Bettler, 2012). Presynaptic

GABAB receptors inhibit voltage-activated Ca2+ channels to

reduce the release of GABA and other neurotransmitters. Post-

synaptic GABAB receptors activate Kir3 channels and thus

inhibit neuronal activity by local shunting or by generating

hyperpolarizing postsynaptic potentials. Since GABAB receptors

regulate a wide variety of physiological processes in the nervous

system, including neuronal firing, synaptic plasticity, and spon-

taneous network oscillations, the activity of GABAB receptors

needs to be temporally precise. In the continuous presence

of the agonist, GABAB receptors exhibit a time-dependent

decrease in receptor response to avoid prolonged effects on

neuronal activity, a phenomenon referred to as desensitization

(Cruz et al., 2004; Sickmann and Alzheimer, 2003; Sodickson

and Bean, 1996; Wetherington and Lambert, 2002). It is

emerging that the desensitization of GABAB receptor-activated

K+ currents observed in neurons integrates distinct mechanistic

underpinnings. First, protein kinases such as PKA or CaMKII

regulate desensitization by directly phosphorylating the receptor

and influencing its internalization from the cell surface (Couve

et al., 2002; Guetg et al., 2010). These phosphorylation-depen-

dent processes typically operate on timescales of minutes to

hours. Second, the ‘‘regulator of G-protein signaling’’ protein 4

(RGS4) induces a faster form of desensitization that occurs

within seconds of agonist application (Fowler et al., 2007; Mut-

neja et al., 2005). RGS proteins are ‘‘GTPase-activating pro-

teins’’ (GAPs) that promote desensitization by accelerating the

rate of GTP hydrolysis at Ga (Ross and Wilkie, 2000). Third, we

recently reported that the K+ channel tetramerization domain

(KCTD)-containing proteins 8, 12, 12b, and 16 represent a novel

family of proteins regulating GABAB receptor-activated K+ and

Ca2+ currents (Schwenk et al., 2010). The KCTDs are cyto-

plasmic proteins that constitutively bind to the C-terminal

domain of GABAB2 (Ivankova et al., 2013; Schwenk et al.,

2010), which together with GABAB1 forms obligate heteromeric

GABAB(1,2) receptors. All four KCTDs accelerate the rise time
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Figure 1. KCTD12-Induced Desensitization

Is Activity Dependent, Reversible, and Op-

erates Upstream of Kir3 Channels

(A) Representative traces of K+ currents activated

by baclofen and recorded at �50 mV in CHO cells

expressing GABAB receptors and Kir3.1/3.2

channels either with or without (w/o) KCTD12 or

KCTD16. The extracellular K+ concentration was

2.5 mM; scaling for current and time as indicated.

KCTD12 but not KCTD16 induces pronounced

and rapid desensitization of the K+ currents.

(B) Bar graph summarizing the relative desensiti-

zation of baclofen-induced K+ currents. The

relative desensitization was calculated as (1 �
(ratio of current amplitude after 60 s versus peak

current)) 3 100. Values are mean ± SD of 60 (w/o

KCTD), 84 (KCTD12), and 8 (KCTD16) experiments.

***p < 0.001; Dunnett’s multiple comparison test.

(C) Recovery of baclofen-activated Kir3 currents

from KCTD12-induced desensitization. After an

initial 25 s application of baclofen to induce

desensitization, baclofen was applied at various

time intervals.

(D) Amplitudes (I) of current responses at various

time intervals normalized to the initial peak ampli-

tude (Imax); data points represented as mean ± SD

of 8 experiments. The line represents fit of a

monoexponential function to the data with a time

constant of 83.6 s.

(E) Representative traces of Kir3 currents activated

either by baclofen or 1-propanol and recorded at

�50mV inCHOcells expressingGABAB receptors,

Kir3.1/3.2 channels, and KCTD12. Note that direct

activationofKir3channelsby1-propanol (red trace)

induces largely nondesensitizing currents (14.9%±

5.1%, n = 10), while activation by baclofen (black

trace) induces strongly desensitizing currents

(88.8% ± 5.9%, n = 10, p < 0.001, paired t test).

Inset shows I-V relation determined with a voltage

ramp during application of 1-propanol.

(F) Kir3.2 channels are efficiently activated by 1-

propanol before and after near complete desen-

sitization of the currents by baclofen. See also

Figure S1.
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of receptor-activated K+ currents while only KCTD12 and

KCTD12b induce fast and pronounced current desensitization

(Schwenk et al., 2010; Seddik et al., 2012). Desensitization is

due to the particular H1 homology domain in KCTD12 and

KCTD12b as well as the absence of an antagonistic H2 homol-

ogy domain present in KCTD8 and KCTD16 (Seddik et al.,

2012). The mechanism by which the KCTDs regulate GABAB

receptor-activated K+ and Ca2+ currents is unknown.

Here we show that KCTD8, KCTD12, and KCTD16 all constitu-

tively bind to the G protein, which stabilizes the G protein at

the receptor and underlies accelerated K+-current responses.

In addition, selectively KCTD12 binds to the activated Gbg sub-

units at their interface with Kir3 channels, thereby uncoupling

Gbg from the channels. This postreceptor mechanism of desen-

sitization is fully reversible and rendered receptor-specific

through the exclusive association of native KCTD12 protein

with GABAB receptors. Thus, these findings identify a unique re-

ceptor-specific mechanism for fast desensitization of G-protein-

activated K+ currents.
RESULTS

KCTD12-Induced Desensitization of GABAB-Activated
Kir3 Currents Is Reversible and Operates Upstream of
the Channel
To study the desensitization of GABAB receptor-activated K+

currents, we performed whole-cell patch-clamp recordings

from CHO cells expressing GABAB receptors and Kir3 channels

with or without KCTD proteins. Application of the agonist baclo-

fen to KCTD-free or KCTD16-containing GABAB receptors

elicited robust outward K+ currents that slightly, and similarly,

decreased in amplitude during a 1 min application period (Fig-

ures 1A and 1B). In contrast, KCTD12-containing GABAB recep-

tors elicited K+ currents that almost completely desensitized

(Figures 1A and 1B). The time course of KCTD12-induced desen-

sitization was approximated by a double exponential function

with time constants of 1.9 ± 0.3 s (relative contribution to desen-

sitization 42.4% ± 11.2%) and 14.3 ± 2.0 s. The KCTD12-

induced desensitization was readily reversible upon removal of
Neuron 82, 1032–1044, June 4, 2014 ª2014 Elsevier Inc. 1033



A

Gαo

15
17

Gβ1

8
14

6
13

3
3

specific peptides
total peptides

AP from mouse brain

anti-GABAB2 anti-KCTD12AP

source WT WT Gabbr2-/-

10

1

3

30

specificity threshold

Gβ2 Gγ12

re
la

tiv
e 

ab
un

da
nc

e 
ra

tio
(r

P
V

 s
ou

rc
e/

ta
rg

et
 K

O 
/  

th
re

sh
ol

d 
rP

V
)

37

100
75

37
25

MW
(kDa)

KCTD8Myc
100

75
50

37
25

50

37

A
P

: a
nt

i-F
la

g
in

pu
t

GβFlag
Gγ2Venus

GβFlag
Gγ2Venus

KCTD16Myc
KCTD12Myc

KCTD8Myc
KCTD16Myc
KCTD12Myc

75

37

25

50

AP: anti-Flaginput

Gβ1YFP

Gγ2Venus

KCTD12Flag

Gαo LUC

B AP from HEK cells

Gβ
1 Flag

Gβ
2 Flag

Gβ
1 Flag

Gβ
2 Flag

Gβ
1 Flag

Gβ
2 Flag

C AP from HEK cells

- + + + + + -
- - - + + + +
- - + - + + +
- + - - - + +

Gβ1YFP
Gγ2Venus
KCTD12Flag

Gαo LUC

MW
(kDa) - + + + + + -

- - - + + + +
- - + - + + +
- + - - - + +

Figure 2. Binding of KCTDs to the G Protein

Does Not Require GABAB Receptors

(A) G protein subunits Gao, Gb1, Gb2, and

Gg12 specifically copurify in APs from WT and

Gabbr2�/� mouse brain membranes using anti-

KCTD12 or anti-GABAB2 antibodies. Specificity of

the G protein subunit interaction with KCTD12 is

determined by the relative abundance of specific

peptides in APs versus target knockout controls

(rPV) compared to threshold rPV (normalized to 1)

(Schwenk et al., 2012). The number of specific and

total peptides retrieved by mass spectrometry for

any G protein subunit is indicated. Note copur-

ification of G protein subunits in anti-KCTD12 APs

from Gabbr2�/� brains in which KCTD12 is not

associated with GABAB receptors.

(B and C) G protein subunits copurify with KCTDs

from membranes of transfected HEK293T cells. In

(B), the Renilla Luciferase-tagged Gao (GaoLUC),

the yellow fluorescent protein-tagged Gb1

(Gb1YFP), and the Venus-tagged Gg2 (Gg2Venus)

were expressed with or without Flag-tagged

KCTD12. In (C),Myc-taggedKCTD8,KCTD12, and

KCTD16 and Venus-tagged Gg2 (Gg2Venus) were

expressed with or without the Flag-tagged Gb

isoforms Gb1 (Gb1Flag) or Gb2 (Gb2Flag). APs were

performed with anti-Flag antibodies and analyzed

by western blot with antibodies against Renilla

Luciferase, Myc, Flag, and GFP. MW, molecular

weight; Venus, variant of GFP. See also Figure S2.

Neuron

Uncoupling of G Protein bg Subunits from Channels
baclofen. After near complete baclofen-induced desensitization,

the responses to subsequent baclofen applications (Figure 1C)

fully recovered with a time constant of 83.6 s (fit to themean, Fig-

ure 1D). To investigate whether KCTD12 directly desensitizes

Kir3 channels, we activated the channels in a G-protein-inde-

pendent manner with 1-propanol (Aryal et al., 2009; Kobayashi

et al., 1999; Lewohl et al., 1999). In the presence of KCTD12,

1-propanol induced K+ currents with negligible desensitization

(Figure 1E). Moreover, 1-propanol effectively, and similarly, acti-

vated Kir3 channels both before and after complete KCTD12-

induced current desensitization obtained by applying baclofen

for 60 s (Figure 1F). Likewise, 1-propanol still activated Kir3

channels during baclofen-evoked KCTD12-induced current

desensitization (Figure S1 available online). Together, these re-

sults demonstrate that KCTD12-induced desensitization is fast,

fully reversible, activity dependent, and operates upstream of

Kir3 channels.

KCTDs Interact with G Protein Subunits
The above results suggest that KCTD12 induces desensitization

at the receptor and/or the G protein. We used a proteomic

approach combining antibody-based affinity purifications (APs)

with high-resolution quantitative mass spectrometry (Müller

et al., 2010; Schwenk et al., 2012) to address whether G protein

subunits directly interact with KCTD12 in native tissue. For APs,

we equilibrated the entire pool of solubilized KCTD12 protein in

mouse brain membranes with anti-KCTD12 antibodies. To con-

trol the specificity of the APs, we used membrane fractions from

Kctd12 knockout (Kctd12�/�) mice (Metz et al., 2011) (target KO;

Figure 2A). The anti-KCTD12 antibody copurified GABAB1,

GABAB2 (but no other GPCRs) and the G protein subunits Gao,
1034 Neuron 82, 1032–1044, June 4, 2014 ª2014 Elsevier Inc.
Gb1, Gb2, and Gg12 (Figure 2A). Copurification of the G protein

subunits was also observed when KCTD12 was not associated

with GABAB receptors (using Gabbr2�/� mice [Gassmann

et al., 2004] for APs; Figure 2A). This suggests that KCTD12

directly interacts with G proteins.

Interactions of KCTD12 with G proteins were confirmed

in APs from HEK293T cells coexpressing combinations of

epitope-tagged KCTD proteins and G protein subunits. FLAG-

tagged KCTD12 copurified the G protein either as a Gabg

trimer or as a Gbg dimer (Figure 2B). Notably, copurification

of individual G protein subunits with KCTD12 either failed

(Gb, Gg) or was very inefficient (Gao). APs with purified recom-

binant KCTD12 and Gb1g2 proteins confirmed that these pro-

teins directly interact with each other (Figure S2). These results

identify the Gbg dimer as the primary interaction partner of

KCTD12 (Figure 2B). Experiments with KCTD8 and KCTD16

confirmed that all KCTD subunits of GABAB receptors bind to

Gbg (Figure 2C).

KCTD12 Dynamically Binds Activated Gbg Subunits and
Prevents Their Interaction with Kir3 Channels
We next tested in transfected CHO cells whether KCTD12 de-

sensitizes K+ currents by directly acting at the G protein. For

this purpose, we activated Kir3 channels in a receptor-indepen-

dent manner with the nonhydrolysable GTP-analog guanosine

50-O-(3-thiotriphosphate) (GTPgS), which we perfused into the

cell via the recording pipette (Figure 3A). By exchanging for

GDP at Ga, GTPgS liberates Gbg and constitutively activates

Kir3 channels (Breitwieser and Szabo, 1988; Dunlap et al.,

1987; Gilman, 1987; Kurachi et al., 1987; Leaney et al., 2004;

Logothetis et al., 1987; Stryer and Bourne, 1986). In the absence
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Figure 3. KCTD12-Induced Desensitization Requires Interaction with the Activated G Protein

(A) Representative Kir3 currents activated by intracellular perfusion of GTPgS (0.6 mM) and recorded at �50 mV in transfected CHO cells expressing Kir3.1/3.2

channels with or without (w/o) KCTD12 or KCTD16. Note that KCTD12-induced desensitization only occurs after activation of the G protein by GTPgS and that

channel activation by Gbg is faster than desensitization by KCTD12. Due to the competition of both processes, the peak current is reached earlier and reduced in

amplitude compared to control (KCTD12: 62.8 ± 61.9 pA, n = 13; w/o KCTD12: 128.0 ± 98.8 pA, n = 28; p = 0.025, Student’s t test). KCTD16 fails to desensitize the

current response.

(B) Bar graph summarizing the desensitization of GTPgS-induced responses. The relative desensitization (calculated after 10min of GTPgS perfusion) was similar

in CHO cells expressing KCTD12 without GABAB receptors (w/o GABAB) or together with WT GABAB receptors or mutant Y902A-GABAB2 receptors that do not

associate with the KCTDs (Schwenk et al., 2010). Data are represented asmean ± SD of 28 (WTGABAB, w/o KCTD), 13 (WTGABAB, + KCTD12), 11 (WTGABAB, +

KCTD16), 9 (Y902A-GABAB2, w/o KCTD), 7 (Y902A-GABAB2, + KCTD12), 10 (w/o GABAB, w/o KCTD), and 6 (w/o GABAB, + KCTD12) recordings. ***p < 0.001;

Dunnett’s multiple comparison test and Student’s t test.

(C) Constitutive activation of the G protein with AlF4
� exposes the activity-dependent binding site on Gbg and selectively increases KCTD12 binding to Gbg.

HEK293T cells, expressing Gai1LUC, Gb1Flag, Gg2Venus, and either KCTD12Myc or KCTD16Myc were lysed in the absence or presence of AlF4
�. APs were

performed with anti-Flag antibodies and analyzed by western blot with antibodies against Renilla Luciferase, Myc, Flag, and GFP.

(D) Baclofen-induced changes in the BRET ratio determined in CHO cells expressing GABAB receptors, Gao-RLuc, Flag-Gb2, and Venus-Gg2 without (w/o) or

with KCTD12 and KCTD16. Single experiments carried out in parallel are shown. Scheme on the left indicates conformational changes during G protein activation

that are monitored by BRET measurements. The BRET ratio decreases during G protein activation due to conformational rearrangement of the Gao-RLuc and

Venus-Gg2 subunits. After receptor blockade with the antagonist CGP54626, reassociation of the G protein is significantly slowed in the presence of KCTD12.

The BRET recovery phases are shown fitted to a double exponential function (inset).

(E) Bar graph of the changes in BRET ratio determined in experiments as in (D).

(F) Bar graph of the amplitude-weighted mean time constants obtained by fitting the BRET recovery phase to a double exponential function in experiments as in

(D). Data in (E) and (F) are represented as mean ± SD of five experiments. ***p < 0.001; **p < 0.01; Kruskal Wallis test.
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of KCTDs or in the presence of KCTD16, GTPgS induced slowly

rising inwardly rectifying K+ currents that exhibited modest

desensitization over the 10 min recording period (Figures 3A

and 3B). In contrast, in the presence of KCTD12 the currents

exhibited pronounced desensitization eventually leading to a

decrease in amplitudes close to baseline (Figures 3A and 3B).

Similar results for KCTD12-induced desensitization were

obtained when Kir3 channels were activated by GTPgS in the

presence of either wild-type (WT) GABAB receptors or mutant

Y902A-GABAB2 receptors that are unable to bind KCTD12 (Cor-
reale et al., 2013; Schwenk et al., 2010) (Figure 3B). These results

demonstrate that KCTD12-induced Kir3 current desensitization

requires activation of the G protein but does not require assem-

bly of KCTD12 with GABAB receptors. Moreover, since GTPgS is

nonhydrolysable, these experiments show that KCTD12 does

not promote desensitization through GAP activity at Ga (Mutneja

et al., 2005; Ross and Wilkie, 2000). Rather, the results point to

an activity-dependent interaction of KCTD12 with the G protein,

in addition to the constitutive interaction that KCTD12 shares

with KCTD8 and KCTD16 (Figure 2). Indeed, constitutive
Neuron 82, 1032–1044, June 4, 2014 ª2014 Elsevier Inc. 1035
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Figure 4. KCTD12 Occludes the Kir3 Inter-

action Site on Gbg

(A) Scheme illustrating activity-dependent inter-

ference with Gbg binding to Kir3 channels using a

Kir3.4-derived peptide.

(B) Representative traces of Kir3 currents evoked

by two consecutive baclofen applications (first

application was for 15 min, second application for

15 s after a 7 min interval) to CHO cells expressing

GABAB receptors in the absence (top, middle)

or presence (bottom) of KCTD12. Cells were

perfused with control intracellular solution (w/o

Kir3.4 peptide) or with intracellular solution sup-

plemented with 40 mM Kir3.4-peptide (+ Kir3.4

peptide).

(C) Bar graphs summarizing the amplitude ratios

of peak K+ currents recorded during the second

(P2) and first (P1) baclofen application. Data are

represented as mean ± SD of 9 (w/o KCTD, w/o

Kir3.4 peptide), 8 (w/o KCTD, + Kir3.4 peptide),

5 (+ KCTD12, w/o Kir3.4 peptide), and 6

(+ KCTD12, + Kir3.4 peptide) experiments. ***p <

0.001; Student’s t test. Note that KCTD12 coun-

teracts the reduction of the peak amplitude by

the Kir3.4-peptide during the second baclofen

application. See also Figure S3.
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activation of the G protein with AlF4
� selectively increased

KCTD12 binding to Gbg, consistent with an activity-dependent

binding site on Gbg that is unique to KCTD12 (Figure 3C).

We next studied whether KCTD12 and KCTD16 differentially

influence G protein conformational rearrangements during G

protein activation, using bioluminescence resonance energy

transfer (BRET) experiments in transfected CHO cells (Digby

et al., 2006; Frank et al., 2005) (Figures 3D and 3E). Indeed,

KCTD12 but not KCTD16 induced a significant increase in the

magnitude of the BRET change during G protein activation.

Moreover, reassociation of the G protein was slowed in the pres-

ence of KCTD12 (Figures 3D and 3F). Altogether, the data are

compatible with KCTD12 influencing conformational changes

of the G protein and/or increasing steady-state G protein disso-

ciation in an activity-dependent manner.

With native GABAB receptors where GABAB(1,2), KCTD12, and

the G protein reside in close proximity (Schwenk et al., 2010),

constitutive and activity-dependent binding of KCTD12 to Gbg

may be envisaged as follows: receptor activation of the G pro-

tein, which is stabilized at the receptor via constitutive binding

to KCTD12, promotes both activation of Kir3 channels and ac-

tivity-dependent interaction of KCTD12 with Gbg. Competition

between KCTD12 and Kir3 channels for Gbg reduces steady-

state Gbg interaction with the channels, which desensitizes

the current response. Finally, the Ga$GDP subunit displaces
1036 Neuron 82, 1032–1044, June 4, 2014 ª2014 Elsevier Inc.
KCTD12 from its activity-dependent

binding site on Gbg and reconstitutes

the heterotrimeric G protein, which ren-

ders the desensitization mechanism

reversible. To address whether KCTD12

occludes the channel binding site of

Gbg (Ford et al., 1998; Whorton and
MacKinnon, 2013), we used a peptide derived from the Gbg

binding site of the Kir3.4 protein (Figure 4A). This Kir3.4-peptide

inhibits Gbg activation of Kir3 channels with an IC50 of 0.6 mM

(Krapivinsky et al., 1998). Perfusion of the Kir3.4-peptide

(40 mM) into CHO cells expressing GABAB receptors and Kir3

channels resulted in strong desensitization of the K+ currents

during a 15 min baclofen application (Figure 4B, middle). The

peptide-induced desensitization was slowly reversible; a 7 min

period showed recovery of the baclofen response to about

half of the initial peak current amplitude (Figures 4B, middle,

and 4C), while complete recovery was obtained in the absence

of the peptide (Figures 4B, top, and 4C). In the combined pres-

ence of KCTD12 and Kir3.4-peptide, the desensitization was

faster than with the peptide alone (Figure 4B, bottom). However,

a close to complete recovery of the peak K+ current amplitude

was obtained within the 7 min period, showing that KCTD12

significantly counteracted the lasting inhibitory effect of the

Kir3.4-peptide (Figures 4B, bottom, and 4C). The most likely

explanation of these data is that KCTD12 efficiently competes

with the Kir3.4-peptide for binding to activated Gbg. While allo-

steric effects of KCTD12 on Kir3.4-peptide binding cannot be

fully ruled out, we consider this possibility less likely. The Gbg

dimer is assumed to be a relatively rigid scaffold for protein

binding and its X-ray structure remains unperturbed when

bound to various peptides or effectors (Lin and Smrcka, 2011;
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Figure 5. KCTD12 and GRK2 Differ in Their

Binding to Gbg and in the Reversibility of

Desensitization

(A) Representative traces of Kir3 currents evoked

by two consecutive baclofen applications in an

interval of 10 min to CHO cells expressing GABAB

receptors with or without (w/o) GRK2.

(B) Traces of Kir3 currents recorded from GRK2-

expressing cells in the absence (blue) or presence

(gray) of 20 mM gallein.

(C) Bar graphs summarizing Kir3 current desensi-

tization. Data are mean ± SD of 7 (w/o GRK2), 11

(+ GRK2), and 6 (+GRK2, + gallein) experiments.

***p < 0.001; **p < 0.01; Dunnett’s multiple com-

parison test or Student’s t test.

(D) Bar graph summarizing the amplitude ratios of

peak K+ currents recorded during the second (P2)

and first (P1) baclofen application (A). Data are

represented as mean ± SD of 5 (w/o GRK2) and

9 (+ GRK2) recordings. ***p < 0.001; Dunnett’s

multiple comparison test. Note that GRK2-

induced desensitization does not revert during the

10 min period.

(E) Bar graph summarizing the effects of 20 mM

gallein and 20 mMselenocystamine on Kir3 current

desensitization in CHO cells with or without

KCTD12. Data are represented as mean ± SD of

8 (control, w/o KCTD), 18 (+ gallein, w/o KCTD),

10 (selenocystamine, w/o KCTD), 7 (control, +

KCTD12), 15 (+ gallein, + KCTD12), and 6

(+ selenocystamine, + KCTD12) recordings. *p <

0.05; Dunnett’s multiple comparison test. Inset

shows representative traces of baclofen-evoked

Kir3 currents recorded from KCTD12-expressing

cells in the absence (+ KCTD12) or presence of

gallein (+ KCTD12, + gallein). See also Figure S4.
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Oldham and Hamm, 2006). Moreover, in our experiments,

KCTD12 was unable to displace the Kir3.4 peptide once bound

to Gbg (Figure S3).

Similar to KCTD12, GPCR kinase 2 (GRK2) binds to Gbg and

induces fast desensitization of GPCR-activated Kir3 currents in

heterologous cells (Raveh et al., 2010). Because KCTD12 and

GRK2 share no sequence or structural similarity, we compared

the properties of the desensitization induced by the two

proteins. Expression of GRK2 in CHO cells increased desensi-

tization of baclofen-activated Kir3 currents by �30% (Figures

5A and 5C). In contrast to KCTD12-induced desensitization,

the GRK2-induced desensitization was irreversible within a

10 min period (Figures 5A and 5D). Moreover, the GRK2-

induced desensitization was prevented by gallein (Figures 5B

and 5C), a compound binding with high-affinity to the protein-

protein interaction ‘‘hot spot’’ of Gbg (Lehmann et al., 2008;

Scott et al., 2001). Gallein and selenocystamine (Dessal et al.,

2011), a structurally unrelated compound that also binds to

the ‘‘hot spot,’’ did not prevent KCTD12-induced desensitiza-

tion (Figure 5E). Thus, KCTD12 and GRK2 binding differs in
Neuron 82, 1032–10
its sensitivity to compounds that bind

to the ‘‘hot spot’’ of Gb. Nonetheless,

as GRK2 and KCTD12 can displace

each other from Gbg (Figure S4), the
binding domains of the two proteins overlap, probably in the

channel-binding area on Gbg.

KCTD12-Induced Desensitization Is Specific for GABAB

Receptors
If KCTD12 induces desensitization by acting at Gbg, it should not

only desensitize GABAB-activated Kir3 currents but also those

activated by other GPCRs, as long as there is free KCTD12 avail-

able tobind toGproteins. Indeed,weobservedKCTD12-induced

desensitization in heterologous cells with various GPCRs. For

example, activation of adenosine A1 (Figure 6A) or mGlu2 recep-

tors (Figures S5A and S5C) in the presence of KCTD12 in trans-

fected CHO cells yielded desensitizing Kir3 currents. Activation

of mutant Y902A-GABAB2 receptors that cannot bind KCTD12

gave rise to strongly desensitizing Kir3 currents in Xenopus oo-

cytes only after injection of KCTD12 cRNA in large excess over

GABAB receptor cRNA (ratio of 32:1; Figure 6B). Under these

conditions, KCTD12 levels are sufficiently high to decrease basal

currents (induced by endogenous or overexpressed exogenous

Gbg; Figures S5F–S5H) and to desensitize Y902A-GABAB2
44, June 4, 2014 ª2014 Elsevier Inc. 1037
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Figure 6. Receptor Specificity of KCTD12-

Induced Desensitization Depends on the

KCTD12/GABAB Ratio

(A) Left: representative K+ current responses

elicited by 2-chloro-N6-cyclopentyladenosine

(CCPA) in CHO cells expressing adenosine A1

receptors with (+ KCTD12) or without (w/o

KCTD12) KCTD12. Right: bar graph summarizing

desensitization of CCPA-induced K+ currents;

data are represented as mean ± SD of 5 experi-

ments.

(B) GABA-activated Kir3 currents recorded at

�50 mV from Xenopus oocytes injected with

cRNA encoding KCTD12 and either WT GABAB2

or mutant Y902A-GABAB2 at the indicated

ratios. Note that mutant receptors only produced

desensitizing responses with a high expression

level of KCTD12, while WT receptors produced

desensitizing responses already at a low

KCTD12 expression level. Y902A-GABAB2 cRNA

expresses slightly less protein than WT GABAB2

cRNA (Figure S5I), showing that the difference in

desensitization is not due to higher expression of

Y902A-GABAB2 than WT GABAB2.

(C) Relative desensitization of K+ currents in Xen-

opus oocytes at different cRNA ratios for KCTD12

and WT GABAB2 or Y902A-GABAB2. Data points

are represented as mean ± SD of 6–11 experi-

ments. Lines are the results of a Hill equation fitted

to the data yielding values for half-maximal effect

and slope factor of 1.01 and 2.34 for WT GABAB2

and 22.5 and 1.06 for Y902A-GABAB2. Inset:

western blots showing expression of KCTD12

protein in oocytes injected with the indicated

cRNA ratios. See also Figure S5.
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receptor-activated Kir3 currents (Figures 6B and 6C). At

equimolar amounts of injected KCTD12 and GABAB receptor

cRNA, activation of Y902A-GABAB2 receptors elicited robust K+

currents that, however, failed to desensitize. This contrasts with

WT GABAB receptors, which exhibited strongly desensitizing

Kir3 currents already at low cRNA ratios (Figures 6B and 6C).

Dose response relations forKCTD12/GABAB2 cRNA ratios versus

Kir3 current desensitization revealed a more than 10-fold differ-

ence between WT and mutant receptors (Figure 6C). Together,

these results suggest that WT GABAB receptors promote desen-

sitization by capturing KCTD12, even at low expression levels,

and juxtaposing it to the activatedGprotein. Accordingly, transfer

of the KCTD-binding domain of GABAB2 to ametabotropic gluta-

mate receptor (mGlu2-GABAB2-CT) endowed this chimera with

rapid and pronounced KCTD12-induced desensitization, similar

to that of GABAB receptors (Figures S5A–S5E).
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The above results show that the

relative amounts of GABAB receptors

and KCTD12 will determine the recep-

tor specificity of desensitization. Next,

we therefore examined to what extent

KCTD12 protein is associated with

GABAB receptors in the adult mouse

brain. For this purpose, we solubilized
the complete pool of KCTD12 protein present in brain mem-

brane fractions and separated the solubilized proteins by native

gel electrophoresis (BN-PAGE) and SDS-PAGE. Western blots

of WT brain probed with anti-KCTD12 and anti-GABAB2 anti-

bodies demonstrated that the vast majority of KCTD12 protein

is assembled into high-molecular weight GABAB receptor com-

plexes (Figure 7A, top). The western blot in Figure 7A (enlarged

at shorter exposure time in the inset in Figure 7B) further indi-

cates that KCTD12 only assembles into a fraction of GABAB re-

ceptors with an apparent molecular mass of �0.6 MDa. A minor

fraction of KCTD12 protein, possibly dissociated from GABAB2

during solubilization, focused in the mass range of 0.15 to

0.18 MDa, the expected value for assemblies of KCTD12 tetra-

mers (Schwenk et al., 2010) and Gbg. When using membrane

fractions from Gabbr2�/� mice, the entire pool of KCTD12 pro-

tein appeared at the lower mass range (Figure 7A, bottom).
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Figure 7. KCTD12 in the Adult Mouse Brain

Is Exclusively Associated with GABAB

Receptors

(A) Two-dimensional gel separations of native

GABAB receptors in membrane fractions prepared

from whole brains of WT and Gabbr2�/� mice.

GABAB2 and KCTD12 were revealed on western

blots. Apparent molecular mass (BN-PAGE) and

molecular weight (SDS-PAGE) are as indicated.

Note that KCTD12 coassembles into high-molec-

ular weight GABAB receptor complexes in WT but

not in Gabbr2�/� mice. The total amounts of

KCTD12 protein inGabbr2�/� andWTmice do not

differ significantly (Figure S6).

(B) Abundance-mass profiles determined by BN-

MS analyses for solubilized GABAB1, GABAB2, and

KCTD12. Each data point represents the amount

determined for the respective protein in one gel

slice (total of 95 slices) normalized to maximum;

symbols are as indicated. Lines are the result of a

mono (red) or double component (blue) Gaussian

function fitted to the data with values for apparent

complex mass peaks of 0.56 MDa (KCTD12), 0.44

MDa, and 0.57 MDa (GABAB2). Note tight coas-

sembly of KCTD12 and a fraction of GABAB re-

ceptors causing a shift in apparent molecular

mass consistent with the weight of KCTD12-Gbg

assemblies. Inset shows western blot of the

2D-PAGE-separated GABAB receptors from (A)

exposed for a shorter period to resolve the

two populations of GABAB receptors. See also

Figure S6.
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Thus, in the adult mouse brain, KCTD12 almost exclusively as-

sociates with GABAB receptors. This agrees with the results

from anti-KCTD12 APs that failed to identify additional GPCRs

associating with KCTD12 (see above). We further investigated

the GABAB-KCTD12 assembly by combined use of BN-PAGE

and quantitative high-resolution mass spectrometry (BN-MS

[Schwenk et al., 2012]). BN-PAGE slices (400 mm) containing

GABAB receptors from whole-brain preparations were individu-

ally analyzed for the relative molecular abundance of GABAB1,

GABAB2, and KCTD12 proteins. The abundance profiles gener-

ated from 95 consecutive slices showed precise coincidence for

GABAB1 and GABAB2 and identified two major populations of

GABAB(1,2) receptors in the apparent molecular mass range of

0.35 to 0.7 MDa (Figure 7B): one population representing coas-

semblies with KCTD12 had a mass of �0.57 MDa, the other
Neuron 82, 1032–10
population had a mass of �0.44 MDa

and is devoid of KCTD12 (and other

KCTDs, data not shown; Figure 7A).

Fitting Gaussian distributions to these

two populations showed that 40% of

GABAB receptors are assembled with

KCTD12, while 60% are free of KCTDs

(Figure 7B). BN-PAGE analysis therefore

supports that in the adult brain KCTD12

exclusively associates with a fraction of

GABAB receptors. This indicates that

GABAB receptors are present in excess
of KCTD12 and implies that KCTD12-induced desensitization

is highly GABAB receptor specific.

Altered GABAB Receptor-Activated K+ Currents in KCTD
Knockout Mice
We previously reported that overexpression of KCTD12 in

cultured hippocampal neurons strongly desensitizes baclofen-

induced K+ currents (Schwenk et al., 2010). We now addressed

whether loss of the KCTDs in hippocampal neurons ofKctd12�/�

(Metz et al., 2011) and Kctd8/12/16 triple knockout (Kctd8/12/

16�/�) mice (Metz et al., 2011) reduces desensitization of baclo-

fen-induced K+ currents. Of note, KCTD12b is selectively ex-

pressed in the medial habenula and therefore has no effect in

the hippocampus (Metz et al., 2011; Schwenk et al., 2010).

Indeed, baclofen-induced K+ currents desensitized significantly
44, June 4, 2014 ª2014 Elsevier Inc. 1039
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Figure 8. Altered GABAB Receptor-Acti-

vated K+ Currents in Kctd12–/– and Kctd8/

12/16–/– Mice

(A) Representative traces of baclofen-evoked K+

currents recorded from cultured hippocampal

neurons of Kctd12�/� (red), Kctd8/12/16 triple

knockout (orange), and WT (black) mice.

(B) Bar graph summarizing the desensitization

observed in neurons of Kctd12�/� (red), Kctd8/12/

16�/� (orange), and control WT (black) mice. Data

are represented as mean ± SD of 31 (Kctd12�/�),
23 (WT control of Kctd12�/�), 13 (Kctd8/12/16�/�),
and 17 (WT control of Kctd8/12/16�/�) neurons.
***p < 0.001; *p < 0.05; Student’s t test. Kctd8/12/

16�/� neurons exhibit a more pronounced reduc-

tion in desensitization than Kctd12�/� neurons.

This may relate to a generally slower G protein/

effector channel coupling (C and D). This may

reduce the basal desensitization, which is KCTD12

independent and determined by the kinetic prop-

erties of the G protein cycle (Chuang et al., 1998;

Leaney et al., 2004; Sickmann and Alzheimer,

2003).

(C) Representative traces of baclofen-evoked K+

currents recorded from neurons of mutant andWT

control mice. Inset shows currents at enlarged

timescale showing the latency period between

start of agonist application (arrow head) and cur-

rent onset (arrows).

(D) Bar graphs summarizing 5%–95% rise time

and latency observed in neurons of mutant and

WT mice (neurons as in B). Data are represented

as mean ± SD. ***p < 0.001; ***p < 0.01; *p < 0.05,

Student’s t test. See also Figure S7.
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less in cultured hippocampal neurons of Kctd12�/� and Kctd8/

12/16�/� mice when compared to neurons of WT mice (Figures

8A and 8B). In contrast, adenosine A1 receptor-induced K+ cur-

rents desensitized to a similar extent in Kctd12�/� and WT

(Kctd12�/�: 9.3% ± 3.0%, n = 9; WT: 12.1% ± 4.1%, n = 9; p =

0.124) neurons, consistent with KCTD12 selectively influencing

GABAB receptor signaling. Interestingly, adenosine A1 recep-

tor-induced K+ currents recorded from Gabbr2�/� neurons

showed increased desensitization compared to WT neurons

(Gabbr2�/�: 25.5% ± 8.4%, n = 13; WT, 10.2% ± 4.7%, n = 6,

p < 0.001). Thus, in the absence of GABAB receptors, KCTD12

is ‘‘released’’ in amounts that promiscuously regulate Gbg

signaling of other GPCRs, similar to the results obtainedwith het-

erologous expression of large amounts of KCTD12 (Figures 6).

All KCTDs shorten the rise time of baclofen-induced K+ cur-

rents in heterologous cells (Schwenk et al., 2010). Moreover,

we found that the latency between agonist application and onset

of the K+ current response is significantly shorter in the presence

of KCTDs and dependent on KCTD binding to the receptor (Fig-

ure S7). Accordingly, the rise times of the baclofen-induced K+

currents recorded in Kctd12�/� and Kctd8/12/16�/� neurons

were significantly longer than those obtained inWT neurons (Fig-

ures 8C and 8D). Of note, Kctd8/12/16�/� neurons exhibit a

significantly slower rise time than Kctd12�/� neurons, consistent

with all three KCTDs contributing to a shortening of the rise time
1040 Neuron 82, 1032–1044, June 4, 2014 ª2014 Elsevier Inc.
(Schwenk et al., 2010). In addition, the latency of the current

response was significantly longer in Kctd12�/� and Kctd8/12/

16�/� neurons than in WT neurons (Figures 8C and 8D). Again,

the latency was longer in Kctd8/12/16�/� than in Kctd12�/� neu-

rons, consistent with heterologous data showing that multiple

KCTDs can accelerate the onset of the current response (Fig-

ure S7). Native KCTDs therefore promote rapid G protein

signalingwith faster rise times and shorter latency of the receptor

response. Accelerated G protein signaling probably relates to

the constitutive binding of the G protein to KCTD8, KCTD12,

and KCTD16, which stabilizes the G protein at the receptor.

DISCUSSION

This work presents a molecular mechanism for fast and

reversible desensitization of G-protein-mediated K+ current

responses. We show that KCTD12 dynamically interacts with

Gbg released from the activatedGprotein and thus directly com-

petes with Gbg binding to the effector Kir3 channel. Albeit

KCTD12 has the intrinsic ability to inhibit Kir3 currents activated

by numerous GPCRs, the exclusive assembly of KCTD12 into

GABAB receptors in the brain results in a highly receptor-specific

current desensitization. Activity-dependent interaction with Gbg

is unique to KCTD12. However, KCTD8, KCTD12, and KCTD16

are all able to constitutively bind the G protein through
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Gbg. Constitutive binding of the KCTDs to both theG protein and

the receptor appears to stabilize the G protein at the receptor

and to accelerate K+ current responses.

A Reversible Mechanism for Fast Desensitization of
GABAB Receptor Responses
The desensitization of GPCR-activated K+ currents that is

observed within seconds of agonist exposure (Sickmann and

Alzheimer, 2002, 2003) is too fast to be explained by classical

mechanisms of desensitization, which typically involve receptor

phosphorylation, uncoupling of the G protein from the receptor,

receptor internalization, and degradation (Evron et al., 2012;

Tsao and von Zastrow, 2000). It emerges that fast desensitiza-

tion is primarily regulated at the postreceptor level. To some

extent, fast desensitization is determined by the kinetic proper-

ties of the G protein cycle, such as the rates of GDP-GTP ex-

change and GTP hydrolysis at Ga (Chuang et al., 1998; Leaney

et al., 2004; Sickmann and Alzheimer, 2003). Accordingly, fast

desensitization is promoted by several proteins acting at the G

protein. These proteins include RGS proteins, which increase

GTPase activity at Ga (Bender et al., 2004; Chuang et al.,

1998; Jeong and Ikeda, 2001; Mutneja et al., 2005; Ross and

Wilkie, 2000), and KCTD12 that shields the Kir3 binding site of

Gbg. Moreover, GRK2 was shown to nonenzymatically induce

fast desensitization of Kir3 currents by scavenging free Gbg

(Raveh et al., 2010). While both KCTD12 and GRK2 induce

desensitization by binding to Gbg, the respective desensitization

mechanisms are profoundly different. KCTD12-induced K+ cur-

rent desensitization is fully reversible, whereas GRK2-induced

desensitization displays poor reversibility (Figure 5). We found

that compounds that bind in the ‘‘hot spot’’ region of Gb (Dessal

et al., 2011; Lehmann et al., 2008) prevent GRK2-, but not

KCTD12-, induced desensitization (Figure 5). This is consistent

with GRK2 binding at the interface of Gbg with Ga (Lodowski

et al., 2003; Tesmer et al., 2005), which sequesters the heterotri-

meric G protein subunits (Tesmer et al., 2005). Moreover, GRK2

probably scavenges free Gbg away from channels (Raveh et al.,

2010), which may contribute to the poor reversibility of the

desensitization mechanism. GRK2, by increasing the refractory

period of the G protein, appears to be better suited to induce

fast and long-lasting desensitization. In contrast, KCTD12, by

avoiding the ‘‘hot spot’’ and specifically targeting the channel

binding site of Gbg, allows for fast desensitization and recovery

of the receptor response.

Receptor Specificity of KCTD12-Induced
Desensitization
Since proteins promoting fast desensitization act at the postre-

ceptor level, fast desensitization is generally expected to lack re-

ceptor specificity. Indeed, the mechanism of KCTD12-induced

desensitization is not intrinsically receptor specific, as shown in

heterologous expression experiments (Figures 6 and S5). Never-

theless, native KCTD12-induced desensitization is exquisitely

GABAB receptor specific. Quantitative proteomic analysis indi-

cates that native KCTD12 is exclusively associated with GABAB

receptors, as no other GPCRs were detected in anti-KCTD12

APs and genetic lack of GABAB2 abolished the appearance of

KCTD12 in high-molecular weight protein complexes (Figure 7).
There may be developmental windows, regional cell types, or

pathological conditions where KCTD12 is expressed in excess of

GABAB2 and, therefore, G protein signaling of other GPCRs may

be influenced. High KCTD12 expression levels have been re-

ported during development (Metz et al., 2011; Resendes et al.,

2004) and may also occur in certain neurons (Metz et al., 2011)

or under pathological conditions. Interestingly, KCTD12 has

been linked to schizophrenia (Benes, 2010), bipolar disorder 1

(Lee et al., 2011), depression (Sibille et al., 2009; Surget et al.,

2009), anxiety (Le-Niculescu et al., 2011), and gastrointestinal

tumors (Hasegawa et al., 2013), which may not necessarily entail

an exclusive action of KCTD12 at GABAB receptors.

Implications of G Protein Binding by the KCTDs for
GABAB Receptor Signaling
KCTD12 displays effects on GABAB responses that may not

directly relate to its role in Gbg inhibition. Thus, all KCTDs accel-

erate the rise time (Schwenk et al., 2010) and reduce the latency

(Figure S7) of baclofen-activated Kir3 currents in heterologous

cells. Accordingly, their loss in Kctd8/12/16 triple knockout mice

leads to markedly slower rise times and increased latency of the

K+ currents in cultured hippocampal neurons (Figures 8C and

8D). The KCTD-dependent acceleration of the receptor response

may result from the dual binding of the KCTDs to the receptor and

theGprotein.Pulling together receptorandGprotein shouldover-

come the slow diffusion-limited association between receptor

andGprotein andshift the rate-limiting step inGprotein activation

from receptor/G protein binding to receptor-driven GDP-GTP

exchange, a fasterprocess (Fowler et al., 2007;Ross, 2008).How-

ever, the KCTDs may also speed up G protein signaling at the re-

ceptor by directly acceleratingGDP-GTP exchange, for example,

by promoting the release of GDP from Ga$GDP. We recently re-

ported that KCTD12 additionally promotes surface expression

ofGABAB receptors in neurons (Ivankova et al., 2013). TheKCTDs

therefore influenceGABAB receptor signaling and thus physiolog-

ical processes in several ways. First, KCTD12-induced fast acti-

vation kinetics may be important for a precise timing of pre- and

postsynaptic GABAB receptor influences on synaptic transmis-

sion. Second, KCTD12-induced fast desensitization may serve

to prevent excessive Kir3 channel activity, which can cause intra-

cellular K+ depletion and neuronal apoptosis (Yu et al., 1997) or

generate seizures (Beenhakker and Huguenard, 2010). Third,

the receptor specificity of KCTD12 may provide a means to

avoid promiscuous and potentially adverse interference with the

signaling of other GPCRs (Rives et al., 2009).

EXPERIMENTAL PROCEDURES

Molecular Biology and Cell Culture

The cDNAs encoding WT and mutant proteins used were all verified

by sequencing and had the following GenBank accession numbers: Y10370

(GABAB1b), AJ011318 (GABAB2), AY615967 (KCTD8), AY267461 (KCTD12),

and NM_026135 (KCTD16). The cDNAs encoding the Kir3.1/3.2 concatemer

(Kaupmann et al., 1998) and the adenosine A1 receptor (Ferré et al., 2002)

were reported earlier. Cell culturing and transfections were as described in

Biermann et al. (2010), Ivankova et al. (2013), and Schwenk et al. (2010).

Biochemistry

Affinity purifications (APs), two-dimensional BN-PAGE/SDS-PAGE separa-

tions, and western blot analyses were carried out as described in Schwenk
Neuron 82, 1032–1044, June 4, 2014 ª2014 Elsevier Inc. 1041
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et al. (2010, 2012). Protein samples for APs were obtained by solubilizing

plasma membrane-enriched protein fractions from whole mouse brains with

ComplexioLyte-47 (CL-47, Logopharm GmbH) at 1 mg protein/ml or by lysing

cultured HEK293T cells or homogenized mouse brains with Nonidet P-40

buffer (100 mM NaCl, 1 mM EDTA, 0.5% Nonidet P-40, 20 mM Tris/HCl

[pH 7.4]). AlF4
� (60 mm AlCl3, 10 mm NaF, 10 mm GDP, 10 mM MgCl2) was

freshly prepared as described in Kawano et al. (2007) and incubated in Nonidet

P-40 buffer before lysis of HEK293T cells. Crude membrane preparations

from Xenopus oocytes injected with the indicated cRNA were obtained as

described previously in Schwenk et al. (2010).

Mass Spectrometry

Nano LC-MS/MS analyses were performed on an LTQ-FT Ultra mass spec-

trometer linked to an UltiMate 3000 HPLC as described (Schwenk et al.,

2012). LC-MS/MS data were extracted using the extract_msn utility and

searched against manually assembled databases derived from UniProt

Knowledgebase release 2013/02 (Mus musculus, Rattus norvegicus, and

Homo sapiens) using the Mascot search engine (version 2.3.01; Matrix Sci-

ence) first with a peptide mass tolerance of 15 ppm. After extraction and

mass shift calibration of precursor m/z signals using MaxQuant (Cox and

Mann, 2008), tolerance was reduced to ±5 ppm for final searches.

Relative quantification of proteins was based on peptide peak volumes

(PVs). PVs from individual peptide species were calculated from the respective

LC-MS full-scan m/z signal intensities integrated over time and mass width

either with MaxQuant (protein ratios in Figure 2) or msInspect (profiles in Fig-

ure 7). Alignment of m/z signals between different LC-MS/MS runs and assign-

ment to the peptides identified by Mascot (retention time tolerance: 1 min, m/z

difference threshold: ±2.5 ppm (MaxQuant), ±5 ppm (msInspect) was carried

out by a home-written software tool and manually verified for proteins yielding

less than six peptide PVs.

Protein abundance ratios (rPV; Figure 2) were determined by the TopCorr

method as described in Bildl et al. (2012). Specificity thresholds of APs were

determined from rPV histograms of all proteins detected in the respective

AP/control. Proteins were considered specifically copurified when rPV (mouse

WT versus KO)/threshold (versus KO) > 1. Unless indicated otherwise, only

proteins with rPVs based on at least two protein-specific peptide PVs were

quantified. Protein mass abundance profiles (Figure 7) were determined

from BN-MS analysis as described (Schwenk et al., 2012).

BRET Measurements

BRET measurements were performed in CHO cells stably expressing GABAB1

and GABAB2 and transiently transfected with plasmids encoding Gao-Rluc,

Venus-Gg2, FLAG-Gb2, andmyc-KCTD12 or myc-KCTD16. BRET signals be-

tween Gao-Rluc and Venus-Gg2 in the presence of 5 mM coelenterazine h

(NanoLight Technologies) were measured on an Infinite F500 microplate

reader (Tecan) after receptor activation with baclofen.

Electrophysiology

Experiments on Xenopus oocytes, CHO cells, and cultured hippocampal neu-

ronswereperformedat roomtemperatureasdescribed inSchwenket al. (2010).

Desensitization time constants were derived from double-exponential fits to

the decay phase of Kir3.1/3.2 currents during baclofen application. Curve

fitting and further data analyses were done with pClamp 10 (Molecular De-

vices) and IGOR Pro (version 6.32; Wavemetrics). Latency was determined

in current responses filtered to 20 Hz as the time interval between the agonist

solution reaching the cell surface and the inflection point indicating current

onset (Doupnik et al., 2004). The inflection point was set at the last zero

crossing of the first derivative of the current before the onset. Data are given

as mean ± SD. Statistical significance was assessed using nonparametric t

tests or ANOVA with the Dunnett’s multiple comparison test. Additional infor-

mation is provided in the Supplemental Experimental Procedures.
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(2004). Bi-directional effects of GABAB receptor agonists on the mesolimbic

dopamine system. Nat. Neurosci. 7, 153–159.

Dascal, N. (2001). Ion-channel regulation by G proteins. Trends Endocrinol.

Metab. 12, 391–398.

Dessal, A.L., Prades, R., Giralt, E., andSmrcka, A.V. (2011). Rational design of a

selective covalentmodifier ofGproteinbg subunits.Mol. Pharmacol. 79, 24–33.

http://dx.doi.org/10.1016/j.neuron.2014.04.015
http://dx.doi.org/10.1016/j.neuron.2014.04.015


Neuron

Uncoupling of G Protein bg Subunits from Channels
Digby, G.J., Lober, R.M., Sethi, P.R., and Lambert, N.A. (2006). Some G pro-

tein heterotrimers physically dissociate in living cells. Proc. Natl. Acad. Sci.

USA 103, 17789–17794.

Doupnik, C.A., Jaén, C., and Zhang, Q. (2004). Measuring the modulatory

effects of RGS proteins on GIRK channels. Methods Enzymol. 389, 131–154.

Dunlap, K., Holz, G.G., and Rane, S.G. (1987). G proteins as regulators of ion

channel function. Trends Neurosci. 10, 241–244.

Evron, T., Daigle, T.L., and Caron, M.G. (2012). GRK2: multiple roles beyond

G protein-coupled receptor desensitization. Trends Pharmacol. Sci. 33,

154–164.
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