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CtBP and Associated LSD1 Are Required for Transcriptional
Activation by NeuroD1 in Gastrointestinal Endocrine Cells

Subir K. Ray,a H. Joyce Li,a Eric Metzger,b Roland Schüle,b Andrew B. Leitera

Department of Medicine, Division of Gastroenterology, University of Massachusetts Medical School, Worcester, Massachusetts, USAa; Center for Clinical Research,
University of Freiburg Medical Center, Freiburg, Germanyb

Gene expression programs required for differentiation depend on both DNA-bound transcription factors and surrounding his-
tone modifications. Expression of the basic helix-loop-helix (bHLH) protein NeuroD1 is restricted to endocrine cells in the gas-
trointestinal (GI) tract, where it is important for endocrine differentiation. RREB1 (RAS-responsive element binding protein 1),
identified as a component of the CtBP corepressor complex, binds to nearby DNA elements to associate with NeuroD and poten-
tiate transcription of a NeuroD1 target gene. Transcriptional activation by RREB1 depends on recruitment of CtBP with its asso-
ciated proteins, including LSD1, through its PXDLS motifs. The mechanism of transcriptional activation by CtBP has not been
previously characterized. Here we found that activation was dependent on the histone H3 lysine 9 (H3K9) demethylase activity
of LSD1, which removes repressive methyl marks from dimethylated H3K9 (H3K9Me2), to facilitate subsequent H3K9 acetyla-
tion by the NeuroD1-associated histone acetyltransferase, P300/CBP-associated factor (PCAF). The secretin, �-glucokinase, in-
sulin I, and insulin II genes, four known direct targets of NeuroD1 in intestinal and pancreatic endocrine cells, all show similar
promoter occupancy by CtBP-associated proteins and PCAF, with acetylation of H3K9. This work may indicate a mechanism for
selective regulation of transcription by CtBP and LSD1 involving their association with specific transcription factors and cofac-
tors to drive tissue-specific transcription.

NeuroD1 is a basic helix-loop-helix (bHLH) transcription fac-
tor that was originally identified as an activator of insulin

gene transcription (1) and as a neurogenic differentiation factor in
Xenopus (2). Cells expressing NeuroD1 arise from endocrine pre-
cursor cells in both the intestine and pancreas that transiently
express the bHLH transcription factor neurogenin 3 (Neurog3).
Neurog3 appears to be important for initiating endocrine differ-
entiation in the gastrointestinal tract and directly increases
NeuroD expression. NeuroD expression occurs as a relatively late
event in maturing enteroendocrine cells and pancreatic � cell pre-
cursors. Lineage tracing studies examining the cell fate of
Neurog3- and NeuroD-expressing cells suggest that Neurog3�

cells are multipotential, giving rise to both endocrine and nonen-
docrine cell lineages (3). In contrast, cells expressing NeuroD are
restricted to an endocrine cell fate, giving rise to most enteroen-
docrine cells while in the pancreas primarily contributing to the �
cell lineage (4). In addition to driving an endocrine cell fate,
NeuroD may have other functions, including inhibiting cell cycle
activity as cells differentiate (5). The genes encoding secretin (Sct),
insulin (Ins I and Ins II), and glucokinase (Gck) are the only direct
transcriptional targets of NeuroD identified thus far in endocrine
cells of the intestine and pancreas (6–8).

By itself, NeuroD1 is a relatively weak activator of transcription
whose activity depends on its association with other promoter-
associated transcription factors (9–11) and the coactivators p300
(5, 12, 13) and PCAF (P300/CBP-associated factor) (14). We pre-
viously identified the zinc finger protein RREB1, which binds to
DNA sequences adjacent to the NeuroD1-binding E box at the
secretin gene promoter and physically associates with NeuroD1 to
increase NeuroD1-dependent transcription (15). RREB1 was first
described as a DNA binding protein that interacted with a Ras-
responsive element in the calcitonin gene promoter (16). Others
suggested that RREB1 promoted p53 transcription following
DNA damage (17). The ability of RREB1 to increase transcription

(15–18) was not expected, since it lacks an intrinsic transcription
activation domain (15) and was identified as a component of the
multiprotein corepressor complex containing CtBP (19) and
LSD1 (20). The majority of studies suggest a role for RREB1 in
transcriptional repression of a number of genes (21–26).

One member of the CtBP complex, the histone lysine demeth-
ylase LSD1, has dual functions to either repress (27, 28) or increase
(29, 30) transcription. In the present work, we examined the po-
tential role of CtBP and LSD1 in regulation of NeuroD1-depen-
dent transcription in gastrointestinal endocrine cells. Our results
show that CtBP and its associated proteins, LSD1 and CoREST,
cooccupied promoters with NeuroD1 at actively transcribed
genes. We found that active transcription involving CtBP depends
on the presence and enzymatic activities of LSD1 and NeuroD-
associated PCAF.

MATERIALS AND METHODS
Cells, reagents, and antibodies. The human duodenal cell line HuTu 80
was obtained from ATCC. Antibodies used included those to CtBP1 (sc-
11390 or sc-17759; Santa Cruz Biotech), LSD1/KDM1 (ab17721; Abcam),
CoREST (ab24166; Abcam), tubulin (T6074; Sigma-Aldrich), acetylated
H3K9 (H3K9Ac) (9649; Cell Signaling), dimethylated H3K4 (H3K4Me2)
(9726S; Cell Signaling), H3K9Me2 (9753; Cell Signaling), H3 (ab1791;
Abcam), PCAF/KAT2B (ab12188; Abcam), NeuroD1 (sc-1084; Santa
Cruz Biotech), and RNA polymerase II (Pol II) (MMS-129R). RREB1
antibody was described previously (15).
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Plasmids. Expression plasmids for CtBP (31), LSD1 (29), NeuroD1
(11), and the glutathione S-transferase (GST)–androgen receptor (AR)
DNA-binding domain (DBD) fusion protein (29) were described previ-
ously. The GST-RREB1 fusion plasmid included amino acids (aa) 447 to
1195 of RREB1 (18). The two PXDLS-like motifs in RREB1 at aa 899 to
901 and 934 to 936 were changed from PXD to AXA to generate GST-
RREB1-MUT.

Reporter plasmids. The reporters pREP4-Secretin-Luc and pREP4-
Cck-Luc contained secretin (32) and Cck (33) promoter fragments cloned
into pREP4-Firefly-Luc (34). pREP7-RSV-Renilla-luc was used to nor-
malize transfection efficiency (34).

shRNA-expressing plasmids. For stable expression of small hairpin
RNA (shRNA), previously published shRNA coding sequences for CtBP
(19), NeuroD (35), CoREST (36), or PCAF (37) were cloned into the
pREP4 plasmid containing the U6 promoter, and for transient expression,
the shRNA coding sequences were cloned into the pBS-U6 vector (38).
The CtBP shRNA expression plasmid was previously shown to knock
down both CtBP1 and CtBP2 (19, 39). To generate the shRNA-resistant
CtBP1 expression plasmid, we introduced silent mutations (indicated in
bold) at the shRNA coding sequence (aa 83 to 91), by site-directed mu-
tagenesis using a primer pair (sense, AGA GAA GAT CTC GAA AAA TTT
AAG GCT CTC CGC ATC AAT CGT CCG GAT T; antisense, AGC CTT
AAA TTT TTC GAG ATC TTC TCT GGT GAG AGT GAT GGT GTG
GTA).

Generation of stable HuTu 80 cells expressing shRNA. Cells were
transfected with pREP4-U6 control, pREP4-U6-CtBP shRNA-, pREP4-
U6-NeuroD shRNA-, pREP4-U6-PCAF shRNA-, or pREP4-U6-CoREST
shRNA-expressing plasmids with Lipofectamine according to the manu-
facturer’s protocol (Invitrogen). After 48 h, the transfected cells were se-
lected with hygromycin (500 �g/ml) for 10 days. RREB1 and LSD1 knock-
down (KD) cells were generated by transduction with lentivirus
containing shRNAs targeting RREB1 (clone no. V3LHS_390533 and
V2LHS_241472; Open Biosystems) or LSD1 (20), followed by selection
with puromycin (2 �g/ml). Puromycin-resistant cells were grown to 60 to
70% confluence for subsequent experiments.

ChIP assays and reverse transcriptase (RT) PCR. Chromatin immu-
noprecipitation (ChIP) was performed as described previously with en-
dogenous DNA (11). Nuclear lysates prepared from cells treated for 10
min with 1% formaldehyde were sonicated to an average size of 300 to
1,000 bp. Soluble chromatin fragments were precleared with normal IgG
and immunoprecipitated by overnight incubation with antibody. ChIP
assays were analyzed either by quantitative real-time PCR using SYBR
green quantitative PCR (qPCR) mix according to the manufacturer’s pro-
tocol (Thermo Scientific) or by gel electrophoresis. For re-ChIP, the an-
tibody-bound chromatin from the first ChIP was eluted by incubating
immunoprecipitates with10 mM dithiothreitol (DTT) at 37°C for 20 min.
The eluted chromatin was diluted 10-fold in re-ChIP buffer, immunopre-
cipitated overnight with a second ChIP antibody, and analyzed similarly
to ChIP. All ChIP and re-ChIP experiments were done a minimum of
three times. Gel data are representative gels from at least three indepen-
dent experiments that resulted in the same findings. RNA isolated using
the RNeasy Plus minikit (Qiagen) was reverse transcribed using the Su-
perScript II first-strand synthesis system (Invitrogen) with levels deter-
mined by quantitative PCR using SYBR green incorporation. Transcript
abundance was normalized to �-actin expression. Primer sequences used
for detecting promoter fragments of interest or for cDNA amplification
are available upon request.

RESULTS
RREB1 recruits CtBP1 to increase NeuroD1-dependent tran-
scription. We previously identified RREB1 as a DNA binding pro-
tein that interacted with the basic helix-loop-helix protein
NeuroD1 to increase transcription (15). RREB1 contains two evo-
lutionarily conserved PXDLS-like CtBP-binding motifs, at aa 899
to 903 and 934 to 938 (Fig. 1A). The function of RREB1 as a

member of the large CtBP corepressor complex has not been char-
acterized (19). Coimmunoprecipitation experiments showed that
CtBP1 and RREB1 associate at their native levels (Fig. 1B, lanes 1
to 3). Moreover, CtBP1 directly binds to wild-type RREB1 in vitro
but not to RREB1 with mutations in the CtBP-binding motifs
(Fig. 1B, lanes 6 and 7). The association of RREB1 with a corepres-
sor complex at a NeuroD-occupied site was not anticipated, since
RREB1 functionally interacts with NeuroD to increase rather than
repress transcription (15).

To determine whether CtBP has a role in transcription of the
secretin gene, we knocked down endogenous CtBP in HuTu 80
cells, a human duodenal cell line that expresses the NeuroD and
secretin genes and several other neuroendocrine genes (40, 41), by
stably expressing a short hairpin RNA (shRNA) (19) previously
shown to knock down both CtBP1 and CtBP2 (19, 39). Depletion
of the CtBP1 protein (Fig. 1C, left) significantly reduced expres-
sion of SCT mRNA (Fig. 1C, right) compared to results with an
empty shRNA vector. The reduction in secretin transcript expres-
sion in CtBP KD cells was unanticipated, suggesting that CtBP
might increase transcription of this gene, in contrast to its major
function as a corepressor. ChIP assays showed that CtBP depletion
reduced RNA Pol II occupancy at the secretin promoter but not at
a control gene, the RPL-30 gene, further implying that CtBP con-
tributes to NeuroD-dependent transcription (Fig. 1D).

We then examined whether CtBP has a direct effect on tran-
scription of the secretin gene using transient expression assays
with HuTu 80 cells. Initial experiments showed that CtBP knock-
down or overexpression had little effect on standard luciferase
reporter genes. We switched to pREP4-Luciferase, a self-replicat-
ing episomal reporter that forms a chromatin structure compara-
ble to that with stably integrated reporter genes (42) and has been
used in similar studies (34, 43, 44). We observed a significant
reduction of pREP4 secretin-luciferase reporter expression in
CtBP knockdown cells (Fig. 1E) with little effect on expression of
a pREP4-Cck-luciferase reporter, indicating that this effect was
specific for the secretin gene and not the Cck gene, which is not
directly regulated by NeuroD. The role of CtBP in NeuroD1-de-
pendent transcription was further confirmed by the rescue of se-
cretin-luciferase expression in cells coexpressing an shRNA-resis-
tant CtBP1 (CtBP1-WTR) with the CtBP shRNA described above
(Fig. 1E).

To determine whether the SCT gene is a direct target of CtBP,
we examined the endogenous enhancer for the presence of CtBP
by ChIP using primers that can amplify promoter sequence within
470 bp upstream of the transcription start site, including se-
quences close to the NeuroD1 (�80) and RREB1 (�127/�108)
binding sites (40). Results show that CtBP1 antibody precipitated
sequences from the secretin promoter but not from the �-actin
promoter (Fig. 2A), indicating that CtBP1 occupancy was pro-
moter specific.

As expected, we identified the presence of RREB1 at the Sct
promoter by ChIP. In RREB1 ChIP, the promoter region was rel-
atively enriched compared to sequences at kb �3.7, suggesting
that RREB1 preferentially bound to the promoter region, close to
its known binding site (Fig. 2B, left). Since CtBP binds directly to
RREB1 but not to DNA, we next determined by re-ChIP experi-
ments if RREB1 and CtBP1 cooccupy the promoter region. Chro-
matin fragments were first precipitated with RREB1 antibody
(first ChIP), followed by reprecipitation with CtBP1 antibody
(second ChIP). The CtBP1-bound chromatin fragments obtained

CtBP and LSD1 Increase NeuroD1-Dependent Transcription
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from the second ChIP were enriched for the promoter region of
the SCT gene compared to the kb �3.7 distal site (Fig. 2B, mid-
dle), indicating that CtBP and RREB1 cooccupied the promoter
region.

To determine whether the presence of CtBP was dependent on
RREB1, we examined the secretin promoter for the presence of
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FIG 1 CtBP increases NeuroD1-dependent transcription of the secretin gene. (A)
Location of CtBP binding (PXDLS) motifs conserved in human (hom) RREB1
(residues 897 to 906 and 927 to 946), mouse (mus), chicken (gal), and zebrafish
(dan), with a consensus sequence underlined. (B) Interaction between CtBP1 and
RREB1. Coimmunoprecipitation (Co-IP) of endogenous CtBP1 with RREB1 an-
tibody from HuTu 80 cell extracts (lane 3). Input: 2.5% of the extracts used for IP.
CtBP1 interacts directly with RREB1 through PXDLS motifs. In vitro binding of

S35-labeled CtBP1 to GST-RREB1 fusion proteins containing the wild type
(WT) (lane 6) but not to mutant (MUT) (lane 7) PXDLS motifs is shown.
Input: 3% of the materials used for binding assay. Lanes 8 and 9 show GST
immunoblot of WT and MUT GST fusion proteins. (C) Effect of CtBP KD on
the CtBP1 protein (left) or on secretin mRNA expression (right; measured by
qPCR, normalized to �-actin) in HuTu 80 cells. (D). Effect of CtBP KD on
RNA Pol II occupancy. ChIP at the SCT promoter (left) or a control region of
the RPL-30 gene (right) was performed using RNA Pol II antibody (Ab) in
control or CtBP KD cells. (E) Effect of CtBP depletion on Sct (left) and Cck
control (middle) reporter genes. Rescue of Sct reporter activity in CtBP-de-
pleted cells by transfected shRNA-resistant CtBP1 (right) is shown. Results are
shown as means � SEM (n � 3). �, P � 0.025.
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CtBP in RREB1-depleted cells. Depletion of RREB1 reduced
CtBP1 occupancy of the promoter without reducing the expres-
sion level of the CtBP1 protein, suggesting that the presence of
CtBP1 depends on RREB1 (Fig. 2C and D). Thus, binding of
RREB1 to its target DNA may recruit the CtBP and associated
proteins to this promoter.

CtBP recruits LSD1 for transcriptional activation. The his-
tone demethylase LSD1 (KDM1A) is one component of the CtBP
complex that functions to either increase or repress transcription.
The dual functions of LSD1 prompted us to examine its role in
secretin gene transcription in more detail. Knockdown of LSD1
with an shRNA significantly (Fig. 3B, right) reduced transcrip-
tional activity of a secretin reporter gene but not of a Cck reporter,
indicating that LSD1 contributes to transcription of the secretin
gene (Fig. 3A, left). Reduced expression of Sct mRNA in LSD1-
depleted cells further suggested a role for LSD1 in Sct gene expres-
sion. LSD1 depletion had no effect on NeuroD or CtBP expres-
sion, indicating that the effects of the LSD1 shRNA were due to
targeting LSD1 (Fig. 3B). To further determine the functional role
of LSD1 in NeuroD1-dependent transcription, we cotransfected
293 cells with the secretin reporter and expression plasmids for
NeuroD1 and LSD1 (Fig. 3A, right). As we showed previously, this
reporter shows minimal expression in the absence of NeuroD,
despite the presence of other regulatory elements and the proteins
that bind to them (5, 7, 11, 15, 45). NeuroD1 alone significantly
increased (�15-fold) the minimal reporter gene expression seen
in its absence. NeuroD-dependent transcription was further en-
hanced, to �50-fold above the basal level, with expression of
LSD1, whereas LSD1 had no effect on basal transcription of the
reporter in the absence of NeuroD1 (Fig. 3A).

Endogenous LSD1 coimmunoprecipitated with both RREB1
(lane 5) and CtBP1 (lane 9), indicating that they associate at their
native levels in nuclear extracts (Fig. 3C). However, CtBP knock-
down eliminated LSD1 coimmunoprecipitation with RREB1
(lanes 5 and 6) without affecting the level of LSD1 (Fig. 3C, lanes 1
and 2), suggesting that the interaction of RREB1 with LSD1 was
CtBP dependent. We confirmed the CtBP dependency of the as-
sociation between LSD1 and RREB1 by the ability of LSD1 in
nuclear extracts to bind to a GST-RREB1 fusion protein but not to
a GST-RREB1 fusion protein with mutations in both the CtBP-
interacting (PXDLS) motifs (Fig. 3D, left). In vitro-translated
(IVT) LSD1 did not bind to the GST-RREB1 fusion protein, while
retaining its ability to associate with the GST-AR DBD (29). These
observations indicate that LSD1 does not directly interact with
RREB1 (Fig. 3D, right). We further examined the role of CtBP in
bringing LSD1 to the promoter by comparing ChIP for LSD1 in
control, CtBP knockdown, and RREB1 knockdown HuTu 80
cells. Depletion of CtBP significantly reduced LSD1 occupancy at
the secretin promoter (Fig. 3E, left), indicating that LSD1 occu-
pancy was dependent on CtBP. Since the presence of CtBP at the
SCT promoter was dependent on RREB1, depletion of RREB1
reduced the presence of LSD1 as expected (Fig. 3D, right), further
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FIG 3 The CtBP complex recruits LSD1 to the promoter to increase transcrip-
tion. (A) Effects of LSD1 knockdown on Sct (left) and Cck control (middle)
reporter gene activity and LSD1 overexpression (right) in HuTu 80 and HEK
293 cells, respectively. (B) Effects of LSD1 depletion on endogenous SCT,
LSD1, and NeuroD1 mRNA, measured by qPCR (left). Immunoblot showing
effects of LSD1 depletion on LSD1 and CtBP1 protein expression (right). Re-
sults are shown as means � SEM (n � 3); �, P � 0.015. (C) Effect of CtBP KD
on the association of LSD1 with RREB1 (lanes 5 and 6). Co-IP of endogenous
LSD1 with RREB1 in control (�) or CtBP KD (�) HuTu 80 cells. A positive
control shows co-IP of endogenous LSD1 with CtBP1 (lane 9). Input: 1%
(lanes 1 and 2) or 7% (lane 7). (D) Interaction of RREB1 with LSD1 in nuclear
extracts (left) or with LSD1 made by in vitro transcription/translation in re-
ticulocyte lysates (right). Nuclear extracts were incubated with GST-RREB1
fusion proteins containing WT or MUT CtBP binding motifs. Bound proteins
were examined by immunoblotting for CtBP1 and LSD1 (left). IVT-LSD1 was

incubated with GST–androgen receptor DNA-binding domain (AR DBD) (a
positive control), GST-RREB1, or GST alone (right). Bound proteins were
detected by immunoblotting for LSD1. Input: 10% of the materials used for
binding assay. (E) LSD1 ChIP at the SCT promoter with extracts of CtBP KD
(left), RREB1 KD (right), and wild-type HuTu 80 cells. Results are shown as
means � SEM (n � 3); �, P � 0.01.
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suggesting that RREB1 recruits members of the CtBP complex
to the SCT promoter. However, LSD1 does not directly interact
with CtBP (46), suggesting that its presence at the promoter
may depend on interactions with another protein in the CtBP
complex.

H3K9Me2-specific demethylase activity of LSD1 is required
for increased transcription associated with CtBP. To further es-
tablish the importance of LSD1 enzymatic activity for NeuroD1-
dependent transcription, we treated cells with pargyline, an inhib-
itor of LSD1 (29, 47). Pargyline inhibited both transcriptional
activity of a secretin gene reporter (Fig. 4A) and expression of the
endogenous gene (Fig. 4B), suggesting that the enzymatic activity
of LSD1 may be important for secretin gene transcription in en-
teroendocrine cells. Moreover, the drug failed to exert similar in-

hibitory effects on transcription in CtBP KD cells, confirming the
dependence of the effects of LSD1 on its association with CtBP
(Fig. 4A). Depletion of LSD1 by RNA interference (RNAi) re-
duced RNA Pol II occupancy at the secretin gene promoter (Fig.
4C) comparably to the effects of pargyline on SCT mRNA levels
(Fig. 4B), whereas LSD1 depletion did not reduce Pol II occupancy
at an unrelated control (RPL-30) gene, further suggesting that
SCT transcription was dependent on LSD1.

Demethylation H3K4Me1 and H3K4Me2 by LSD1 results in
repression of transcription (19). LSD1 can also demethylate
H3K9Me2, resulting in increased transcription from removal of
repressive histone marks (29). Demethylation of H3K9 may con-
tribute to the observed activation of gene transcription by CtBP.
To further characterize whether the H3K4 or H3K9 demethylase
activity of LSD1 was associated with increased transcription, we
examined the methylation status of H3K9 and H3K4 by ChIP at
the SCT promoter in control and pargyline-treated HuTu 80 cells
(Fig. 4D). Pargyline treatment increased H3K9Me2 at the SCT
gene promoter, suggesting that the enzymatic activity of LSD1 is
required to remove repressive marks at H3K9. Depletion of LSD1
was associated with a significant increase in H3K9Me2, confirm-
ing that the effects of pargyline were likely mediated by LSD1 (Fig.
4E). As expected for an actively transcribed gene, we observed
methylation of H3K4. Pargyline treatment had little effect on
ChIP for H3K4Me2 at the SCT promoter compared to results with
untreated cells, suggesting that H3K4 may be nearly fully methyl-
ated and that, as expected, the H3K4 demethylase activity of LSD1
is inactive at the promoter of an actively transcribed gene. In ad-
dition, LSD1 depletion was associated with reduced acetylation of
H3K9 at the Sct promoter. The latter modification is seen with
actively transcribed genes. LSD1 depletion had no effect on
H3K9-Ac at a control (glyceraldehyde-3-phosphate dehydroge-
nase [GAPDH]) gene, which is not normally occupied by LSD1
(Fig. 4E).

Acetylation of H3K9 by PCAF (KAT2B) is required for tran-
scriptional activity. The experiments shown in Fig. 4 indicate that
removal of the repressive H3K9Me2 marks at H3K9 is dependent
on the H3K9 demethylase activity of CtBP-associated LSD1, pos-
sibly allowing for subsequent H3K9 acetylation and active tran-
scription. H3K9 is a known substrate for the HAT (48) activity of
PCAF. In addition, PCAF has been previously shown to bind di-
rectly to NeuroD1 and to increase transcription (14). As expected,
ChIP for PCAF confirmed its presence at the SCT promoter (Fig.
5A). To determine whether PCAF occupancy of the promoter was
dependent on NeuroD1, we examined NeuroD1 knockdown cells
by ChIP for the presence of PCAF. Depletion of NeuroD1 reduced
PCAF promoter occupancy, suggesting association with NeuroD1
as one potential mechanism for bringing PCAF to the CtBP-occu-
pied SCT promoter (Fig. 5A).

We further evaluated the functional role of PCAF in cells stably
expressing a PCAF shRNA in HuTu 80 cells by ChIP for RNA Pol
II (Fig. 5B and C). PCAF knockdown significantly reduced RNA
Pol II occupancy, suggesting that PCAF was required for active
transcription of the SCT gene. The observed reduction was ac-
companied by a significant reduction in H3K9 acetylation at the
SCT promoter but not at the control gene (GAPDH), suggesting
that PCAF acetylates H3K9 to promote transcription of the SCT
gene (Fig. 5B). Depletion of PCAF significantly reduced transient
expression of a secretin reporter gene, confirming the importance
of PCAF for Sct gene expression (Fig. 5C).
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Proteins at NeuroD1 target promoters during active tran-
scription. In addition to CtBP, RREB1, and LSD1, we examined
the SCT promoter for the presence of the transcriptional corepres-
sor, CoREST, another component of the CtBP complex that di-
rectly interacts with LSD1 (20, 49–51). ChIP experiments identi-
fied CoREST occupancy at the secretin promoter (Fig. 5D).
Depletion of CoREST by a specific shRNA reduced the expression
of an Sct reporter gene, suggesting that its presence contributes to
transcriptional activation by NeuroD1. CoREST depletion also
reduced promoter occupancy by LSD1 but had no effect on pro-
moter occupancy by RREB1 (Fig. 5D). The CoREST shRNA had
little effect on LSD1 protein expression (Fig. 5D, right), suggesting
that CoREST is necessary for retaining LSD1 in the RREB1/CtBP
complex at the Sct gene.

We next determined if CtBP1, LSD1, PCAF, and CoREST
cooccupied the SCT promoter with NeuroD1 by re-ChIP. Follow-
ing immunoprecipitation with the first ChIP NeuroD1 antibody,
NeuroD-bound chromatin fragments underwent the second
ChIP with antibodies against LSD1, CoREST, CtBP1, PCAF, and
H3K9Ac (Fig. 5E). The NeuroD1-bound chromatin fragments
obtained from the first ChIP were highly enriched for promoter
region sequences of the SCT gene compared to distal sequences at
kb �3.7, indicating that NeuroD bound to the promoter region,
close to its established E box binding site. Each of the CtBP-asso-
ciated proteins examined in the second ChIP cooccupied the SCT
promoter with NeuroD1, as did PCAF. The presence of a strong
activation mark, H3K9Ac, at the NeuroD1-occupied promoter
indicates that the presence of CtBP1 and associated proteins oc-
curs in an environment favoring active transcription. In addition,
cooccupancy of CtBP1, LSD1, and CoREST with NeuroD1 sug-
gests that they potentially contribute directly to NeuroD-depen-
dent transcription.

Although NeuroD1 is expressed in most endocrine cells of the
intestine and pancreas (4), relatively few genes that are directly
activated by NeuroD1 have been identified. Besides the Sct gene,
the mouse insulin I, insulin II, and �-glucokinase (Gck) genes
have been identified as direct transcriptional targets of NeuroD1
(1, 6, 12). We examined the promoters of these additional
NeuroD1 target genes in endocrine cells for the presence of pro-
teins identified earlier as occupying the secretin promoter. We
identified NeuroD1, RREB1, CtBP1, and PCAF by ChIP at the Gck
and Sct promoters in the murine STC1 enteroendocrine cell line
(Fig. 6A, left). The same proteins also occupied the Sct, insulin I,
and insulin II promoters in the pancreatic � cell line, �TC6 (Fig.
6B, left). All four promoters in the murine cell lines show acetyla-
tion of H3K9, much like findings for HuTu 80 cells. Occupancy of
both promoters by RNA Pol II further indicates that the Sct and
Gck genes were actively transcribed in STC1 cells (Fig. 6A, right),
as were both insulin genes in �TC6 cells (Fig. 6B, right). Likewise,
the Sct gene was actively transcribed in �TC6 cells (52), which we
previously showed expressed high levels of Sct transcripts (32).
Thus, promoter cooccupancy of NeuroD1-regulated endocrine
genes by CtBP and associated proteins may have a more general
role for NeuroD-dependent transcription in the GI tract.

DISCUSSION

We previously identified RREB1 as a DNA binding protein that
potentiated relatively weak transcriptional activation by
NeuroD1. Other studies have shown that RREB1 may either acti-
vate (15–18) or repress (21–26) transcription, depending on the
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context. The discovery that RREB1 was a component of the large
multiprotein CtBP complex containing multiple histone and
chromatin modifying activities suggested that repressive and pos-
sible activating effects of RREB1 on transcription are the result of
epigenetic modifications. Although RREB1 has been identified as
a component of the CtBP complex, only one prior study has de-
scribed functional interaction between RREB1 and CtBP at the
HLA-G gene by electrophoretic mobility shift assay (EMSA). In
this case, the interaction resulted in transcriptional repression of
the HLA-G gene (53).

In the present work, we have shown that CtBP binds directly to
RREB1 through two evolutionarily conserved PXDLS motifs be-
tween Zn fingers 11 and 12 to cooccupy the SCT promoter with
NeuroD1. Depletion of RREB1 reduces CtBP occupancy, suggest-
ing that RREB1 contributes to the recruitment of CtBP to specific
DNA sequences. Thus, RREB1 may function similarly to ZEB1, a
DNA binding protein with two PXDLS motifs that associate with
the hydrophobic cleft of CtBP, bringing it and other proteins in
the CtBP complex to specific DNA sequences to repress transcrip-
tion (46, 54). RREB1 appears to recruit CtBP to the Sct promoter,
resulting in increased transcription. The binding of RREB1 to
DNA adjacent to the NeuroD binding site, as well as the physical
interaction between the two proteins, may provide a measure of
promoter selectivity for the observed mechanism. Likewise, the
functions of Zeb1 may be selective, recruiting CtBP to the growth
hormone (GH) gene in pituitary cells with repressed but not active
GH expression (30). The basis for Zeb1 selectivity has yet to be
examined.

The presence of CtBP and RREB1 at an actively transcribed

promoter, as reported here, has not been previously described.
Although a number of early studies suggested that CtBP might be
involved in increasing gene expression, the observed effects in
some cases may have been indirect (55–57). These older studies
were completed prior to the discovery that CtBP was part of a large
multiprotein complex involved in histone and chromatin modifi-
cation. Recent ChIP-sequencing (ChIPseq) analysis of CtBP-oc-
cupied genes identified a small fraction that may be activated by
CtBP (58). However, the mechanisms contributing to increased
transcription by CtBP in mammalian cells have not been charac-
terized.

LSD1, a component of the CtBP complex, functions in both
transcriptional repression and activation. One study proposed
that the effects of LSD1 depend on its association in a corepressor
versus a coactivator complex. In the anterior pituitary, LSD1 re-
pressed growth hormone expression in developing lactotrophs
when associated with the CtBP complex while increasing growth
hormone expression in somatotrophs as part of WDR5/MLL1 co-
activator complexes (30). However, a switch to a coactivator com-
plex cannot explain our findings, since the effects of LSD1 in stim-
ulating transcription from NeuroD1-occupied promoters depend
on its association with CtBP.

The effects of LSD1 enzymatic activity on gene transcription may
depend on the substrate utilized. Demethylation of H3K4Me2 in as-
sociation with the CtBP complex results in transcriptional repres-
sion (27, 28). LSD1 also catalyzes demethylation of H3K9Me2,
with resultant transcriptional activation (29). Removal of repres-
sive methylation marks at H3K9 by LSD1 has been implicated in
ligand-dependent activation of androgen and estrogen receptor-
dependent transcription (29, 47, 59, 60).

The opposing effects of demethylation at H3K4 versus that at
H3K9 on transcription imply the existence of mechanisms that
favor demethylation at H3K9 while inhibiting H3K4 demethyla-
tion. We previously showed that demethylation of H3K9 associ-
ated with androgen receptor-dependent transcriptional activation
occurs without demethylation of H3K4 (29) and that H3T6 phos-
phorylation prevents H3K4 demethylation (60). Another mecha-
nism for regulating LSD1 substrate specificity involves PELP1, an
estrogen receptor (ER) coregulator that associates with LSD1and
ER	 in the presence of ligand to switch its specificity from
H3K4Me2 to H3K9Me2 in estrogen receptor-activated transcrip-
tion (47). Finally, simultaneous demethylation of both H3K4 and
H3K9 occurs at some actively transcribed genes, indicating that
selection between H3K4 and H3K9 as LSD1 substrates does not
occur in all cases (59).

The ability to interrogate the genome for occupancy by tran-
scription-modifying proteins has identified a very large number of
genes that associate with CtBP or LSD1. Depending on the meth-
odology and cell types studied, LSD1 associates with 
10,400
genes (59, 61), with CtBP occupying 
6,600 binding sites across
the genome (58). Although most biochemical studies have fo-
cused on the functional role of these two proteins as corepressors,
chromatin occupancy studies indicate that LSD1 is predomi-
nantly associated with approximately 81% of actively expressed
and bivalent genes, whereas less than one quarter of silenced genes
associate with LSD1. The association of LSD1 with actively tran-
scribed genes may indicate a more significant role for its H3K9
demethylase activity than previously appreciated. The relation-
ship between CtBP binding and transcriptional activation is less
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well characterized, since CtBP appears to be more frequently as-
sociated with repression.

Both CtBP and LSD1 have been implicated as regulators of
gene expression. The discovery that a very large number of genes
are associated with LSD1 or CtBP implies that additional mecha-
nisms are needed to account for their specificity in transcriptional
regulation. The presence of either protein at core promoter and
enhancer regions throughout the genome suggests that functional
interactions with specific transcription factors may define how
these proteins regulate gene expression and potentially play a role
in their function as coactivators or corepressors.

The basis for increased gene expression associated with CtBP in
mammalian cells has not been previously identified. We believe
that the association of CtBP/LSD1 with NeuroD may represent an
example of such a mechanism involving a tissue-specific tran-
scription factor. A first level of selectivity results from the restric-
tion of NeuroD expression to endocrine cells and their precursors.
The presence of RREB1 binding sites close to NeuroD binding
sites and their direct physical interaction with each other may
facilitate recruitment of CtPB to specific genes expressed in endo-
crine cells as second means of selective gene activation. Finally, the
recruitment of the histone acetyltransferase PCAF by NeuroD to
endocrine gene promoters and its acetylation of H3K9 may con-
tribute to CtBP/LSD1 functioning as coactivators in the specific
context studied here (Fig. 7). Our observations may be an example
of a broader context for how proteins like CtBP and LSD1 interact
with transcription factors to regulate specific gene expression pro-
grams. The ability of LSD1 and/or CtBP to associate with different
transcription factors also implies their involvement in many dis-
tinct biochemical mechanisms for regulating gene expression.
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