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SUMMARY

Hyperpolarization-activated cyclic nucleotide-gated
(HCN) channels are key modulators of neuronal
activity by providing the depolarizing cation current
Ih involved in rhythmogenesis, dendritic integration,
and synaptic transmission. These tasks critically
depend on the availability of HCN channels, which
is dynamically regulated by intracellular cAMP; the
range of this regulation, however, largely differs
among neurons in the mammalian brain. Using
affinity purification and high-resolution mass spec-
trometry, we identify the PEX5R/Trip8b protein as
the b subunit of HCN channels in the mammalian
brain. Coassembly of PEX5R/Trip8b affects HCN
channel gating in a subtype-dependent and mode-
specific way: activation of HCN2 and HCN4 by
cAMP is largely impaired, while gating by phosphoi-
nositides and basal voltage-dependence remain
unaffected. De novo expression of PEX5R/Trip8b in
cardiomyocytes abolishes b-adrenergic stimulation
of HCN channels. These results demonstrate that
PEX5R/Trip8b is an intrinsic auxiliary subunit of brain
HCN channels and establish HCN-PEX5R/Trip8b
coassembly as a mechanism to control the channels’
responsiveness to cyclic nucleotide signaling.

INTRODUCTION

Hyperpolarization-activated cyclic nucleotide-regulated (HCN)

channels are nonselective cation channels assembled as homo-

or heterotetramers from the protein subunits encoded by the

four members of the HCN channel family (HCN1–4; Ludwig

et al., 1998; Santoro et al., 1998). For activation under physiolog-
814 Neuron 62, 814–825, June 25, 2009 ª2009 Elsevier Inc.
ical conditions, HCN channels use a complex gating machinery

which is primarily fueled by membrane hyperpolarization and

receives strong modulatory input from interactions with cyclic

nucleotides (for review, Robinson and Siegelbaum, 2003) and

phosphoinositides such as phosphatidylinositol-4,5-bisphos-

phate (PIP2; Pian et al., 2006; Zolles et al., 2006). Upon binding

to the a subunit, either modulator allosterically shifts the voltage-

dependent activation curve by up to 20 mV toward depolarized

potentials and thus increases the number of activatable or acti-

vated channels at any given membrane potential in the physio-

logical voltage range.

Once activated, HCN channels give rise to the depolarizing

cation current termed Ih (or If, Iq) that is fundamentally involved

in a number of physiological processes. These include the

control of pacemaking activity in both heart and brain (DiFran-

cesco, 1993; Pape and McCormick, 1989), determination of

the resting membrane potential (Williams and Stuart, 2000),

control of membrane resistance and synaptic integration in

dendrites (Magee, 1999) as well as primary sensory transduction

(Stevens et al., 2001).

These functions critically depend on the availability of HCN

channels which is determined by their expression on the cell

surface and their biophysical properties. Surface expression of

HCN channels in brain may be controlled by PEX5R/Trip8b,

a HCN interactor that was identified in a yeast-two-hybrid screen

and shown to decrease surface half-life of HCN channels in

heterologous expression systems (Santoro et al., 2004). The

biophysical availability of HCN channels can be dynamically

regulated through the allosteric modulators; in particular, the

intracellular concentration of cAMP is known to be effectively

regulated on a rapid time scale via different signaling pathways

(Willoughby and Cooper, 2007). Among the most prominent

examples of second-messenger controlled HCN functions are

the b-adrenergic regulation of heart rate via the control of

voltage-dependent HCN gating in sinuatrial node cells (Brown

et al., 1979; DiFrancesco, 1995) and the transition between sleep

and wake states of the brain via modulatory control of HCN
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channel gating in thalamocortical relay neurons (Pape and

McCormick, 1989). In the latter case, activation of ascending

reticular brainstem systems leads to increased cAMP levels

and thereby mediates a HCN-channel-dependent switch of elec-

trical discharge pattern in thalamocortical relay neurons, which

in turn creates an important wake-up signal in the brain. In addi-

tion, receptor-mediated regulation of HCN channel activity has

been implied in the control of neuronal excitability and informa-

tion processing in various CNS neurons. This includes modula-

tion of the resting membrane potential of brainstem motoneu-

rons and hippocampal interneurons by norepinephrine, 5-HT,

and opioid receptor agonists (Bobker and Williams, 1989; Lark-

man and Kelly, 1992; Maccaferri and McBain, 1996; Svoboda

and Lupica, 1998) as well as the increase in network activity

underlying working memory formation by a2-adrenergic-trig-

gered inhibition of Ih via decreasing cAMP levels in prefrontal

cortex neurons (Wang et al., 2007).

With respect to the extent of cAMP-induced shifts in voltage-

dependent gating of HCN channels, considerable variability

ranging from �2 mV to �14 mV has been described not only

for different cell types (for review, Santoro and Tibbs, 1999) but

also in disease states, where reduced cAMP-modulation of

HCN channels might, e.g., contribute to epileptogenesis (Kuisle

et al., 2006). These differences were attributed to either varying

subunit compositions of HCN channels, as distinct HCN

subtypes show variable degrees of cAMP-dependent gating

(Ishii et al., 1999; Seifert et al., 1999; Chen et al., 2001; Stieber

et al., 2005; Zolles et al., 2006) or to posttranslational modifica-

tion of their gating machinery by protein kinases and phospha-

tases (Zong et al., 2005; Arinsburg et al., 2006; Huang et al.,

2008; Li et al., 2008). Alternatively, HCN channels in the mamma-

lian brain may associate with further yet unknown protein

subunits that effectively modulate their gating properties similar

to the auxiliary subunits of other ion channel families (Curtis and

Catterall, 1984; Isom et al., 1992; Garcia-Calvo et al., 1994; Re-

ttig et al., 1994; Sanguinetti et al., 1996).

By combining affinity-purification of native HCN channel

complexes with high-resolution mass spectrometry, we identify

PEX5R/Trip8b as the b subunit of HCN channels in the mamma-

lian brain. Association of PEX5R/Trip8b with HCN channels

attenuates their modulation by cyclic nucleotides and thus

determines their responsiveness to cAMP signaling.

RESULTS

Affinity Purification of HCN Channel Complexes
For investigating the molecular entities of HCN channels in the

mammalian brain, HCN2-containing channel complexes were

affinity purified with a HCN2-specific antibody (anti-HCN2)

from membrane fractions that were prepared from total rat brain

and efficiently solubilized under conditions preserving high

molecular weight complexes (Figures 1A and 2B). Complete

eluates of affinity purifications (APs) with anti-HCN2 and several

pools of rabbit immunoglobulin G (IgG) serving as negative

control were analyzed by high-resolution nanoflow liquid chro-

matography tandem mass spectrometry (nano-LC MS/MS;

Figure 1A). These analyses showed that all four HCN isoforms,

HCN1–4, were retained by the anti-HCN2 antibody both specif-
ically and abundantly as indicated by the relative peptide query

(rPQ) score and the normalized PQ (PQnorm) score, respectively

(Table 1). The rPQ-score (ratio of the numbers of MS/MS spectra

obtained for a protein in the APs with anti-HCN2 and control

IgGs) provides a measure for the purification specificity of

a protein (rPQ scores >4 are indicative for specific copurification

(Berkefeld et al., 2006)), while the PQnorm score (number of MS/

MS spectra obtained for a given protein divided by the number of

theoretically identifiable peptides) estimates its abundance in an

AP (Schwenk et al., 2009). The peptides retrieved by mass spec-

trometry provided coverage of the primary sequence of 57%,

51%, 34%, 31%, for HCN1–4, respectively (Figure 1B). In addi-

tion to the HCN a subunits, MS analysis consistently identified

PEX5R (or synonym: Trip8b), a protein previously found as an

HCN channel interactor in a yeast two-hybrid screen (Santoro

et al., 2004). PEX5R was specifically copurified with high yield

(peptides covering 77% of the accessible sequence) under all

solubilization conditions used, strongly suggesting that this

protein is tightly associated with HCN channels in the CNS

(Figure 1C; Table 1).

Coassembly of HCN channels and PEX5R was confirmed by

‘‘reverse APs’’ using a PEX5R-specific antibody (anti-PEX5R)

on membrane fractions from rat brain solubilized under the

same conditions as before. As illustrated in Figure 2A by the

ion chromatogram (intensity of the MS signal over elution time)

and the MS/MS spectrum of one selected HCN2-specific

peptide (the same as in Figure 1B), the HCN2 protein was specif-

ically copurified with anti-PEX5R (absence of the respective MS

signal in IgG controls) at an abundance similar to that seen in APs

with the anti-HCN2 antibody (Figure 2A, inset). In addition, HCN-

PEX5R coassembly was corroborated by a two-dimensional gel

separation of rat brain membrane fractions using blue native

polyacrylamide gel electrophoresis (BN-PAGE) and denaturing

SDS-PAGE. Subsequent western probing of this separation

with anti-HCN2 and anti-PEX5R antibodies revealed close comi-

gration of both proteins indicative for their tight association

(Figure 2B). The amounts of HCN and PEX5R proteins in APs

with anti-HCN2 and anti-PEX5R were further quantified using

the MS signals (m/z peak volumes) of all HCN and PEX5R

peptide fragments obtained in these APs together with a signal

calibration determined in nano-LC MS/MS analyses of heterolo-

gously expressed PEX5R-HCN fusion proteins (see Experi-

mental Procedures). The results of this quantification showed

that the total amount of HCN protein (HCN1–4) was about the

same in either AP, strongly suggesting that both HCN and

PEX5R proteins are assembled in almost equimolar ratios in

the rat brain (Figure 2C).

Moreover, MS analyses of the eluates from anti-PEX5R APs

failed to detect other proteins present at an abundance compa-

rable to that of the HCN channel a subunits (Figure 2D). This

result pointed toward a preferred and bimolecular assembly of

HCN and PEX5R not requiring further protein partners. The latter

was confirmed in an anti-PEX5R AP from Xenopus oocytes co-

expressing HCN1 and PEX5R; the respective MS analysis

retrieved 44 and 25 peptide queries (24 and 19 different

peptides) for PEX5R and HCN1, respectively.

In summary, the biochemical analyses showed that HCN

channel a subunits and PEX5R are intimately coassembled
Neuron 62, 814–825, June 25, 2009 ª2009 Elsevier Inc. 815
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in the brain at comparable molar ratios reminiscent of the part-

nering between voltage-gated cation channels and their auxiliary

b subunits.

PEX5R Antagonizes Activation of HCN Channels
by cAMP
Auxiliary subunits are known to modulate processing and/or

the biophysical properties of the pore-forming a subunits of ion

channels (Curtis and Catterall, 1984; Isom et al., 1992; Garcia-

Calvo et al., 1994; Rettig et al., 1994; Sanguinetti et al., 1996;

An et al., 2000; Estevez et al., 2001). We therefore tested whether

coassembly of PEX5R and HCN subunits affects the gating

characteristics of the channels in giant inside-out (i-o) patches

from Xenopus oocytes expressing HCN channels either alone

or together with PEX5R. Figure 3A illustrates currents recorded

from homo- and heteromeric HCN2 channels in response to hy-

Figure 1. HCN Channels and PEX5R Are

Effectively Copurified from Rat Brain

Membrane Preparations

(A) (Left panel) Scheme of the proteomic approach

used for analysis of HCN channel complexes from

total rat brain; solubilization conditions A (buffer

ComplexioLyte48) and B (buffer Complexio-

Lyte71) were used in affinity purifications (APs).

(Right panel) MS spectrum recorded during high-

resolution MS analysis of an eluate from an AP

with anti-HCN2. Arrow head denotes a HCN2-

specific peptide fragment with a m/z ratio of

497.259; inset: spectrum of this peptide at

enlarged scale indicating the respective isotope

peaks.

(B) (Left panel) MS/MS spectrum of the peptide in

(A) indicating its amino acid sequence (given in

carboxy-to-amino-terminal direction) as derived

from its y+-ion series. (Right panel) Coverage of

the HCN2 primary sequence by the peptides iden-

tified with LC-MS/MS. Sequence stretches

retrieved by mass spectrometry are in red, those

accessible to but not identified are in black, and

stretches not accessible to MS/MS analyses are

in gray.

(C) MS/MS spectrum of a PEX5R-specific peptide

(left panel) retrieved in MS analyses of the same

anti-HCN2 AP as in (A) and (B) together with the

respective coverage of the PEX5R amino acid

sequence (right panel).

perpolarizing voltage steps and in the

presence of a saturating concentration

of cAMP (100 mM) at the cytoplasmic

side. Although both types of channels

gave rise to hyperpolarization-activated

currents, they differed considerably in

their characteristics. While homomeric

HCN2 channels provided robust currents

at a membrane potential of �110 mV,

currents through HCN2 channels coas-

sembled with PEX5R (HCN2 + PEX5R)

displayed largely reduced amplitudes

under these conditions (Figure 3A, red

traces). In addition, PEX5R slowed the time course of channel

activation at �110 mV more than 3-fold (1.10 ± 0.19 s [mean ±

SD of n = 7 patches] and 3.75 ± 0.88 [n = 6], p < 0.0005, Student’s

t test). Further analysis showed that both PEX5R effects, reduc-

tion in current amplitude and slowing of the activation time

course, resulted from an impaired cAMP gating of the hetero-

meric HCN2 + PEX5R channels. Thus, PEX5R reduced the

cAMP-mediated shift in voltage-dependent activation by about

60% (values for DV1/2 of 7.1 mV and 17.1 mV for HCN2 +

PEX5R and HCN2 channels, respectively), without changing the

basal voltage-dependence determined in extensively washed-

out membrane patches (values for V1/2 of �123.2 ± 3.4 mV [n =

11] and �123.6 ± 3.1 mV [n = 15] for HCN2 + PEX5R and HCN2

channels, respectively). Moreover, when corrected for the

different cAMP-mediated shifts in voltage-dependence, the acti-

vation time constants of homomeric HCN2 and heteromeric
816 Neuron 62, 814–825, June 25, 2009 ª2009 Elsevier Inc.
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Figure 2. PEX5R Is Tightly Coassembled with HCN Channels in the Mammalian Brain

(A) Identification of HCN2 in an AP with the anti-PEX5R antibody. Ion chromatogram (total ion current) and MS/MS spectrum (inset) of the same HCN2-specific

peptide which is shown in Figure 1. The m/z ratio of 497.259 was not detected in APs with preimmunization IgG pools used as a control. Note the similar signal

intensities of the HCN2 peptide in APs with both anti-HCN2 and anti-PEX5R antibodies.

(B) Two-dimensional gel separation of HCN channel complexes in solubilized membrane fractions from total rat brain; the gel separation was western probed with

the indicated antibodies. Size (BN-PAGE, derived from standards for high molecular weight complexes) and molecular weight (SDS-PAGE) as indicated.

(C) Bar graph illustrating the abundance of the indicated HCN and PEX5R proteins in APs with anti-PEX5R (left) and anti-HCN2 (right) antibodies. Quantification of

protein amounts used HCN-PEX5R fusion proteins for calibration (see Experimental Procedures); HCN1–4 indicates the sum of all four HCN protein isoforms in

the respective AP.

(D) Logarithmic rPQ values of proteins identified in APs with anti-HCN2 and anti-PEX5R (rPQ values from Table 1). Blue circles refer to proteins identified in only

one of the two APs; area shaded in gray highlights nonspecifically purified proteins. Note that only HCN subunits and PEX5R were purified at high abundance in

both APs.
HCN2 + PEX5R channels showed no obvious difference (see

Figure S1A available online).

The efficacy of the PEX5R-HCN2 interaction was further inves-

tigated by titrating the amounts of HCN2 and PEX5R cRNAs in-

jected into oocytes and monitoring the cAMP-induced shift of

the steady-state activation curve. As shown in Figure 3C, the

cAMP-shift depended on the ratio of the two cRNAs and was

minimal at a HCN2/PEX5R cRNA ratio of 1/9. A similar reduction

of the cAMP-shift was obtained when PEX5R was fused to the

N terminus of the HCN2 protein (PEX5RHCN2) ensuring stoichio-

metric assembly of both proteins into functional HCN channels

(Figure 3C). Coexpression of free PEX5R with this fusion

construct did not result in a further reduction of the cAMP-shift,
indicating that the PEX5R effect was maximal at a HCN2/PEX5R

cRNA ratio of 1/9 (Figure 3C).

Next, we tested the specificity of the gating effect of PEX5R by

probing its influence on a cAMP-insensitive mutant of HCN2

(HCN2(R591E)) as well as by probing its interference with the

phosphoinositide-mediated modulation of channel gating in

HCN2 wild-type. As illustrated in Figure 4, neither voltage-

dependent activation of HCN2(R591E) channels was affected

by PEX5R (Figure 4A), nor did it influence the modulation of

channel activation by phosphoinositides (Figure 4B). Thus, satu-

rating application of PIP2 onto washed i-o patches resulted in

a similar shift in the steady-state activation curve toward more

positive potentials in both HCN2 and HCN2 + PEX5R channels
Neuron 62, 814–825, June 25, 2009 ª2009 Elsevier Inc. 817
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(values for DV1/2 of 18.0 ± 0.8 mV [n = 10] and 17.3 ± 3.1 mV

[n = 12] for HCN2 and HCN2 + PEX5R channels, respectively).

Moreover, PEX5R-mediated impairment of cAMP-gating was

independent of whether the cyclic nucleotide was applied to

washed i-o patches before or after exposure to PIP2 (Figure 4B).

Together, these results demonstrated that coassembly with

PEX5R selectively antagonized the shift in voltage-dependent

activation of HCN2 channels by cAMP.

The Effect of PEX5R on HCN Channel Gating Is Subtype
Specific
Next, we investigated the effects of PEX5R on the cAMP-gating

of HCN1 and HCN4 channels in i-o patches excised from

oocytes that were injected with PEX5R and HCN cRNAs at 1/1

ratios. In HCN4 channels, association with PEX5R antagonized

the modulation of channel gating by cAMP very similar in extent

to what was observed in HCN2 (values for DV1/2 by cAMP of

17.6 ± 1.9 mV [n = 7] and 10.6 ± 3.0 mV [n = 12] for HCN4 and

HCN4+PEX5R channels respectively, p < 0.001, Student’s t

test; Figure 5B). Again, the basal voltage-dependent gating of

HCN4 channels, was unaffected by the coassembly with

PEX5R (values for V1/2 of 127.7 ± 3.8 mV [n = 7] and 130.8 ±

4.9 mV [n = 12] for HCN4 and HCN4 + PEX5R channels, respec-

tively, p = 0.14, Student’s t test; Figure 5B).

In contrast to HCN2 and HCN4, PEX5R failed to exert any

obvious effect on gating and cAMP modulation of HCN1 chan-

nels in excised patches. Thus, the small increase in current

amplitude induced by cAMP as a result of an �5 mV shift of

the activation curve of HCN1 channels was independent of the

coassembly with PEX5R (values for V1/2 of 98.8 ± 3.1 mV [n =

28] and 98.1 ± 2.3 mV [n = 11] for HCN1 and HCN1 + PEX5R

channels, respectively, p = 0.7, Student’s t test; values for DV1/2

by cAMP of 4.9 ± 1.2 mV [n = 28] and 4.5 ± 1.0 mV [n = 11] for

HCN1 and HCN1 + PEX5R channels, respectively, p = 0.94,

Student’s t test; Figures 5A and 5B). This lack of effect was not

due to low expression or impaired association of PEX5R with

HCN1 channels as fusion of both proteins (PEX5RHCN1) resulted

in a similar cAMP-shift of the steady-state activation curve as

seen with homomeric HCN1 or heteromeric HCN1 + PEX5R

channels (Figure 5B). These results indicated that PEX5R selec-

Table 1. HCN and PEX5R Proteins Affinity Purified with the

Indicated Antibodies from Rat Brain Membrane Fractions

and Identified by nano-LC MS/MS Analyses (as detailed

in Experimental Procedures)

anti-HCN2 Sol48 anti-HCN2 Sol71 anti-PEX5R Sol71

Protein ID rPQ PQnorm rPQ PQnorm rPQ PQnorm

HCN1 468 1.16 262 0.89 200 0.68

HCN2 734 1.86 515 1.81 262 0.92

HCN3 85 0.19 92 0.28 85 0.26

HCN4 277 0.51 177 0.45 298 0.37

PEX5R/Trip8b 253 1.24 223 1.00 443 1.72

rPQ is relative peptide query score; values for rPQ >4 indicate specific

copurification of a given protein (Berkefeld et al., 2006). PQnorm is normal-

ized peptide query score; the values for PQnorm are a quantitative

measure for the coverage (and hence the abundance) of a given protein

in an AP.
818 Neuron 62, 814–825, June 25, 2009 ª2009 Elsevier Inc.
tively acts on the HCN subtypes where modulation by cAMP is

most prominent.

The antagonistic effect of PEX5R on cAMP-gating was

recapitulated by lentiviral expression of GFP-fused PEX5R

(GFPPEX5R) in CA1 pyramidal neurons of organotypic hippo-

campal slice cultures at 6 DIV (Figure 6). At this stage of postnatal

development, HCN channels are predominantly composed of

HCN2 and HCN4 (Surges et al., 2006), while expression of

PEX5R is low or absent (Figure S2). Accordingly, a large

cAMP-induced shift in voltage dependent activation of Ih was

observed in mock-infected CA1 pyramidal cells (DV1/2 by

cAMP of 19.7 mV as obtained from fits to the mean of 6 neurons),

that was markedly reduced upon viral expression of PEX5R

(DV1/2 by cAMP of 12.7 mV [n = 8]; p < 0.001 for the PEX5R-medi-

ated effect, Student’s t test; Figures 6A and 6B). As before, basal

voltage-dependence of Ih (determined in the absence of cAMP)

was unaffected by expression of GFPPEX5R (Figure 6B); Ih ampli-

tudes were slightly reduced (Figure S3).

The N-Terminal Core of PEX5R Is Necessary
for Its Gating Effect
Next, we investigated the molecular determinants of PEX5R

involved in its antagonizing effect on cAMP-gating of HCN chan-

nels. For this purpose, two N-terminal deletion mutants of PEX5R

were constructed, one lacking the very N terminus (D2–41) that is

known to be subject to extensive alternative splicing (B. Santoro,

personal communication) and another one preserving only the

C-terminal half of the protein including the six tetratrico peptide

repeats (Figure 7A). As shown in Figure 7B, the deletion mutant

PEX5R(D2–41) was similarly effective in reducing cAMP modula-

tion of HCN2 channels as PEX5R wild-type, whereas the

PEX5R(D1–258) mutant failed to affect cAMP-gating of HCN2

channels. This lack of effect could not be attributed to a lack in

expression or association with the HCN2 protein, as both

PEX5R(D1–258) and HCN2 were effectively copurified with the

anti-HCN2 antibody (4 and 8 peptide queries, respectively).

These observations implied that the N-terminal core domain

of PEX5R was necessary for mediating the gating effect of

PEX5R, whereas its C terminus containing the tetratrico peptide

repeats was sufficient for biochemical association with HCN2

channels.

De Novo Expression of PEX5R in Cardiomyocytes
Abolishes b-Adrenergic Activation of If
In the mammalian heart, sympathetic stimulation of b-adrenergic

receptors in sinuatrial pacemaker cells leads to an acceleration

of the heart rate as a result of If activation via an increase in intra-

cellular cAMP levels (DiFrancesco, 1995). This signaling pathway

is reconstituted in cultures of dissociated embryonic atrial cardi-

omyocytes (Reppel et al., 2005). Moreover, as these cells are

devoid of endogenous PEX5R (tested by western probing and

RT-PCR), de novo expression of PEX5R in these cells by lentiviral

gene transfer was used as a model system to explore the signif-

icance of the HCN-PEX5R association for HCN channel gating in

context of a physiological cAMP signal transduction pathway.

As shown in Figure 8A, the b-adrenergic agonist isoprenaline

shifted voltage dependent activation of If in mock-infected

embryonic atrial cardiomyocytes expressing green fluorescent
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Figure 3. Coassembly with PEX5R Antagonizes Cyclic Nucleotide Gating of HCN2 Channels

(A) Representative currents of HCN2 (upper panel) and HCN2 + PEX5R channels (cRNA ratio: 1/9; middle panel) recorded in response to voltage steps to poten-

tials between�70 mV and �130 mV (�PEX5R) or�140 mV (+PEX5R) in 10 mV increments (holding potential 0 mV, tail potential 50 mV) in the presence of cAMP

(100 mM). Traces in red are responses to a step potential of�110 mV. Inset: Tail currents at expanded time scale, bar is 50 ms. (Lower panel) Current responses of

HCN2 and HCN2+PEX5R channels recorded at �110 mV before (black) and after (red) application of cAMP (100 mM). Traces were normalized to maximum

current (gray traces). Current and time scales as indicated. Horizontal line is zero current.

(B) Steady-state activation curves of HCN2 channels (black) and HCN2 + PEX5R channels (cRNA ratio: 1/9; red) before (filled symbols) and after application of

100 mM cAMP (open symbols). Data points are mean (±SEM) of 11–15 patches. Lines are fit of a Boltzmann function to the data with values for V1/2 and slope

factor of�123.4 mV (5.2 mV) (HCN2, washed),�106.3 mV (5.1 mV) (HCN2, cAMP),�123.6 mV (5.2 mV) (HCN2 + PEX5R, washed),�116.2 mV (5.3 mV) (HCN2 +

PEX5R, cAMP).

(C) Summary of the shifts in activation curve induced by cAMP (100 mM) in the indicated channels (see text). Data points are mean (±SD) of 6–23 patches.
protein (GFP) by 5.3 ± 0.5 mV (mean ± SEM of 15 cells). Expres-

sion of PEX5R C terminally fused to GFP (GFPPEX5R), however,

completely prevented the isoprenaline-induced shift in voltage

dependent activation of If in these cells (DV1/2 by isoprenaline

of�0.3 ± 0.7 mV [n = 9]; p < 0.001 for the PEX5R mediated effect,

Student’s t test; Figure 8B). Functional integrity of the fusion

protein was tested in excised patches from Xenopus oocytes

(data not shown).

These results from cardiomyocytes demonstrated that coas-

sembly with PEX5R limits the response sensitivity of HCN chan-

nels to physiological cyclic nucleotide signaling conditions.

DISCUSSION

The central finding of this study is the identification of PEX5R as

the predominant auxiliary subunit of HCN channels in the
mammalian brain. Coassembly with PEX5R specifically antago-

nizes modulation of HCN channel gating by cAMP, thus

providing a potent mechanism to control the responsiveness

of Ih to cyclic nucleotide signaling.

Molecular Composition of HCN Channels
in the Mammalian Brain
The molecular composition of HCN channels in the rat brain was

investigated using a comprehensive approach with native PAGE

analysis, APs combined with LC-MS/MS analysis and heterolo-

gous expression of protein complexes (Berkefeld et al., 2006;

Schulte et al., 2006; Schwenk et al., 2009). HCN2 containing

channel complexes were almost completely solubilized and ex-

hibited high apparent molecular weight in native gels (approxi-

mately 0.8–2 MDa; Figure 2B) demonstrating that most HCN

channels are not just tetramers of a subunits (expected
Neuron 62, 814–825, June 25, 2009 ª2009 Elsevier Inc. 819
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molecular weight of �0.5 MDa) but are rather associated with

further protein partners. In fact, besides HCN isoforms 1–4,

APs of HCN2 channels efficiently retrieved PEX5R, a protein

previously reported as an HCN2 interactor in a yeast-two-hybrid

screen (Santoro et al., 2004). Quantitative evaluation of MS data

using peptide peak intensities and calibration with fusion

proteins showed that HCN and PEX5R proteins were copurified

in comparable molar amounts (Figure 2C). Moreover, relative

participation (molar ratios) of the four HCN subunits found in

Figure 4. The Effect of PEX5R on HCN Channel Gating Is Mode

Specific

(A) Representative currents of HCN2(R591E) mutant channels and

HCN2(R591E) + PEX5R channels (cRNA ratio: 1/1; upper panel) recorded

in response to voltage steps to potentials between �70 mV and �140 mV in

10 mV increments (holding potential 0 mV, tail potential 50 mV). Traces in

red are responses to a step potential of �120 mV. Current and time scales

as indicated. Lower panel, steady-state activation curves of HCN2(R591E)

mutant channels (black) and HCN2(R591E)+PEX5R channels (cRNA ratio: 1/1;

red). Data points are mean (±SEM) of 5 patches. Lines are fit of a Boltzmann

function to the data with values for V1/2 and slope factor of �122.5 mV

(4.8 mV) (HCN2(R591E)), �121.6 mV (4.4 mV) (HCN2(R591E) + PEX5R).

(B) Summary of the shifts in activation curve of HCN2 and HCN2 + PEX5R

channels (cRNA ratio: 1/1) induced by PIP2 (10 mM) or by cAMP (100 mM)

before and after application of PIP2. Data points are mean (±SD) of 10–12

patches.
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APs with anti-PEX5R and anti-HCN2 was very similar and in

reasonable agreement with published data on both mRNA and

protein expression of HCN isoforms in the CNS (Monteggia

et al., 2000; Notomi and Shigemoto, 2004). The comigration of

PEX5R and HCN2 in the two-dimensional gel separation

(Figure 2B) corroborated their tight association independent of

our APs. Assembly of HCN and PEX5R occurs through direct

protein-protein interactions as both proteins were effectively

copurified from oocytes coexpressing HCN1 or HCN2 and

PEX5R.

Thus, our biochemical and proteomic data establish PEX5R as

the predominant b subunit coassembled with the vast majority

of HCN channels in the mammalian brain. However, our data

do not rule out populations of HCN channels in the CNS that

lack PEX5R or that associate with other proteins nor do they

Figure 5. The Effect of PEX5R on HCN Gating Is Subtype Specific

(A) Representative currents of HCN1 and HCN1 + PEX5R channels (cRNA

ratio: 1/1; upper and lower, left) recorded in response to voltage steps to

potentials between�50 mV and�120 mV in 10 mV increments (holding poten-

tial 0 mV, tail potential 50 mV) in the presence of 100 mM cAMP. Traces in red

are responses to a step potential of �100 mV. Representative currents of

HCN1 and HCN1 + PEX5R channels (upper and lower, right) recorded at

�100 mV before (black) and after (red) application of 100 mM cAMP. Current

and time scales as indicated.

(B) Summary of the cAMP-induced shifts in activation curve and V1/2 of basal

voltage dependence of the indicated channels (see text). Data points are mean

(±SD) of 7–28 patches.
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elucidate the stoichiometry of HCN to PEX5R subunits in HCN

channel complexes.

Significance of HCN-PEX5R Association for Channel
Gating
Cyclic nucleotides increase the number of activatable or

activated channels at any given membrane potential in the

physiological voltage range by shifting their voltage-dependent

activation curve to more depolarized membrane potentials

(DiFrancesco and Tortora, 1991). Upon binding to the cyclic

nucleotide binding domain (CNBD), they are thought to relieve

inhibition of the channel imposed by the concerted action of

the CNBD and the C-linker connecting the CNBD to the trans-

membrane core domain of the channels (Wainger et al., 2001;

Wang et al., 2001).

Our i-o patch recordings on HCN-PEX5R complexes showed

that the auxiliary PEX5R subunit selectively antagonizes the

Figure 6. Expression of PEX5R Impairs Cyclic Nucleo-

tide Gating of HCN Channels in Hippocampal CA1

Pyramidal Cells

(A) (Left panel) Confocal images of the CA1 region of organo-

typic slice cultures 4 days following transduction with lenti-

virus driving expression of either GFP (upper panel) or

GFPPEX5R (lower panel). GFP-negative (red) and GFP-positive

CA1 neurons (yellow; arrows) were patched with pipettes

containing a red fluorescent dye (Alexa 566). (Right panel)

HCN-mediated currents recorded from CA1 pyramidal

neurons expressing GFP (upper panel) or GFPPEX5R (lower

panel) in response to 2 s-hyperpolarizing voltage steps from

a holding potential of �50 mV (increments of 10 mV). Cells

were dialyzed with pipette solutions containing 0.1 mM 8-Br-

cAMP; current responses to �80 mV are shown in red. Scale

bars are 50 pA and 500 ms.

(B) Steady-state current-voltage relation of HCN currents re-

corded from CA1 neurons expressing either GFP (black

symbols) or GFPPEX5R (red symbols) in experiments as in (A)

without and with 0.1 mM 8-Br-cAMP in the patch pipette.

Data points are mean ± SEM of 6–8 neurons. Continuous lines

are fit of a Boltzmann function to the data with values for V1/2

and slope factor of �84.3 mV (12.0 mV) (GFPPEX5R, washed)

�71.6 mV (10.1 mV) (GFPPEX5R, +cAMP),�84.8 mV (11.2 mV)

(GFP, washed), �65.1 mV (10.4 mV) (GFP, +cAMP).

disinhibition by cAMP in HCN2 and HCN4 channels

without any detectable effect on the modulatory

action of the phosphoinositide PIP2 or on the basal

voltage-dependence of the channels’ gating

machinery (Figures 3 and 4). Similar results were

obtained in a neuronal cell context upon expression

of PEX5R in CA1 pyramidal cells in organotypic

hippocampal slice cultures (Figure 6). Mechanisti-

cally, the cAMP-antagonizing effect of PEX5R

most likely results from interference with the allo-

steric coupling between CNBD and channel core

as binding of cAMP to the CNBD was not influ-

enced by the coassembled PEX5R (Figure S1B).

Yet the exact molecular determinants of this allo-

steric interference as well as the interaction inter-

face between the PEX5R and the HCN proteins

remain to be identified. At this point, deletion analysis revealed

that the C terminus of PEX5R harboring the tetratrico peptide

repeats is sufficient for biochemical interaction with HCN chan-

nels, while its N-terminal core region is required for antagonizing

cAMP-gating. As only the very N terminus of PEX5R but not the

N-terminal core is subject to alternative splicing (Santoro et al.,

2009, this issue of Neuron), the effect on cAMP-gating should

be preserved in all PEX5R isoforms.

The extent of the cAMP-antagonizing effect of PEX5R may be

determined by the stoichiometry of the PEX5R-HCN interaction

as inferred from the titration experiment in Figure 3C or by further

yet unknown mechanisms including posttranslational modifica-

tions. In any case, PEX5R failed to fully abolish cAMP-modula-

tion even when overexpressed or directly fused to the HCN

a subunit (Figure 3C), thus converting HCN2 and 4 into HCN1-

like channels with a residual cAMP-shift of their voltage-depen-

dent activation (Chen et al., 2001; Wang et al., 2001).
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Significance of HCN-PEX5R Association
for Responsiveness of HCN Channels
to Cyclic Nucleotide Gating
The PEX5R-mediated impairment of cAMP modulation of HCN

channels would be expected to reduce recruitment of Ih by cyclic

nucleotides. We probed this prediction in the cellular context of

embryonic cardiomyocytes where cAMP signaling through

b-adrenergic receptors is well established (Ji et al., 1999; Reppel

et al., 2005). In fact, whole-cell recordings from these cells

demonstrated that b-adrenergic stimulation increases If ampli-

tudes in the physiologically relevant voltage-range by shifting

the activation curve of the HCN channels by �5 mV (Figure 7A).

This shift in activation was abolished upon de novo expression of

PEX5R (Figure 7B) emphasizing that assembly with the PEX5R

subunit is sufficient to suppress receptor-mediated stimulation

of If. This result together with the data from functional proteomics

imply that PEX5R may act as a determinant controlling respon-

siveness of neuronal HCN channels to receptor-mediated cyclic

nucleotide signaling.

EXPERIMENTAL PROCEDURES

Molecular Biology

In vitro transcription and injection of cRNA into Xenopus oocytes was done as

described (Fakler et al., 1995). GenBank accession numbers of the cDNAs

used were AJ225123.1 (HCN1), AJ225122.1 (HCN2), AJ132429.1 (HCN4),

NM_173152 (PEX5R/Trip8b). Site-directed mutagenesis was performed as

described before (Hardel et al., 2008). All cDNAs were verified by sequencing.

Figure 7. The N-Terminal Core Is Responsible for the Gating Effect

of PEX5R

(A) Schematic drawing of PEX5R. Numbers and letters referring to the amino

acid sequence of PEX5R (SwissProt accession number: Q925N3) indicate

the deletion constructs used; dark gray bars represent the six tetratrico

peptide repeats in the C terminus of the protein.

(B) Summary of the cAMP-induced shifts in activation curve determined for the

indicated wild-type and mutant channels (HCN2 to PEX5R wt/mutant cRNA

ratio: 1/9; data points are mean (±SD) of 5-15 patches.
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Biochemistry

Preparation of Membrane Solubilisates

Synaptosomal-enriched protein fractions were prepared from freshly isolated

adult rat brains (Wistar, RP30) by isotonic homogenization and hypotonic lysis

of dense vesicles followed by separation on a sucrose step gradient (interface

consisting primarily of synaptosomal membrane vesicles; Feigenbaum et al.,

1988; Knaus et al., 1995). Solubilization of membrane protein complexes was

achieved by suspension of vesicles in ComplexioLyte buffers 48 and 71 (LOGO

PHARM GmbH, Germany; 1 mg protein/ml, with protease inhibitors added) at

Figure 8. De Novo Expression of PEX5R in Embryonic Cardiomyo-
cytes Abolishes b-Adrenergic Activation of If
(A) Representative HCN channel-mediated currents (If) recorded in atrial

embryonic cardiomyocytes under control conditions (upper, left) and during

adrenergic stimulation with isoprenaline (100 nM; upper right). Currents were

recorded in response to voltage steps to potentials between �40 mV and

�110 in 10 mV increments (holding potential �40 mV, tail potential �110 mV).

Traces in blue are responses to a step potential of �80 mV. Current and time

scales as indicated. Lower panel, steady-state activation curves of If deter-

mined from the experiments above. Lines are fit of a Boltzmann function to

the data with values for V1/2 and slope factor of�76.1 mV and 9.7 mV (control),

and �70.9 mV and 9.3 mV (stimulated). Inset, summary of the shifts in activa-

tion curve of If induced by isoprenaline. Data are mean (±SEM) of 15 cardio-

myocytes.

(B) Experiments as in (A) performed in cardiomyocytes expressing GFPPEX5R.

Inset, Data are mean (±SEM) of 9 cardiomyocytes.

www.ncbi.nlm.nih.gov
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4�C for 30 min followed by ultracentrifugation (15 min at 130,000 3 g). For the

preparation of PEX5R-HCN1 and PEX5R-HCN2 fusion proteins as quantifica-

tion standards (Beynon et al., 2005), Xenopus oocytes injected with the respec-

tive cRNAs (cultivated for 4 days) were used as source material.

Affinity Purification (AP)

Brain membrane solubilisates (10 ml) were incubated for 2 hr at 4�C with 50 mg

immobilized affinity-purified rabbit anti-HCN2 (APC-030, Alomone Labs,

Israel), rabbit anti-PEX5R (kind gift of B. Santoro), or control IgG pools

(Upstate). After washing (3 3 5 min), bound proteins were eluted with Laemmli

buffer (DTT added after elution). Fusion protein constructs were purified from

oocyte membrane solubilisates (ComplexioLyte 71) using 5 mg immobilized

anti-PEX5R and anti-HCN2, respectively. Prior to tryptic digestion, all eluates

were shortly run on SDS-PAGE gels and silver stained.

Native Gel Electrophoresis

Solubilized (salt replaced by 1 M betaine) protein complexes were supplied

with Coomassie G250 (0.025% final concentration) and resolved on a 2–

15% linear native polyacrylamide gel (BNPage; Schagger et al., 1994). A

mixture of native proteins (GE Healthcare) was run as complex size standard

in the first dimension. For denaturing separation in the second dimension,

gel lanes were excised, equilibrated in Laemmli buffer, and run on a 8%

SDS-PAGE gel. After electroblotting on PVDF membrane, western analysis

was performed with anti-HCN2 visualized by anti-rabbit IgG-HRP (Santa

Cruz Biotechnologies) and developed with ECL Plus (GE Healthcare).

Mass Spectrometry

Protein samples were in-gel digested with trypsin as described previously

(Pandey et al., 2000). Extracted peptides were redissolved in 0.5% trifluoro-

acetic acid and loaded on a C18 PepMap100 precolumn (5 mm; Dionex) using

an UltiMate 3000 HPLC (Dionex). Peptides were then eluted with an aqueous-

organic gradient, resolved on a 75 mm column (PicoTip Emitter; tip: 8 ± 1 mm;

New Objective) packed with ReproSil-Pur 120 ODS-3 (C18; 3 mm; Dr. A

Maisch, Ammerbuch-Entringen, Germany) and directly electrosprayed into

an LTQ-FT mass spectrometer (Thermo Scientific; ion source: Proxeon).

Each scan cycle consisted of one FTMS full scan and up to five ITMS depen-

dent MS/MS scans of the five most intense ions. Dynamic exclusion (30 s,

mass width 20 ppm) and monoisotopic precursor selection were enabled. Ex-

tracted MS/MS spectra were searched against the Swissprot database (Mam-

malia) using the Mascot search engine (Matrix Science) accepting common

variable modifications and one missed tryptic cleavage. Peptide tolerance

was ±10 ppm and MS/MS tolerance was ± 0.8 Da. Peptide peak volumes (inte-

gral of m/z signals, also termed extracted ion current, XIC) were determined

and aligned with respect to their retention times using MsInspect (Computa-

tional Proteomics Laboratory, Fred Hutchinson Cancer Research Center,

Seattle, WA).

MS results were evaluated as follows: The relative peptide query (rPQ) score

was calculated as a measure of the purification specificity of proteins identified

in a given AP; rPQ scores >4 are indicative for specific copurification (Berkefeld

et al., 2006). To estimate abundance of a given protein, the number of queries

(sum of all MS/MS spectra) was divided by the number of peptides theoreti-

cally identifiable by mass spectrometry (6–25 amino acids in length) for the

respective protein (normalized PQ score, PQnorm). More accurate quantifica-

tion was achieved by evaluating the XIC values that are directly proportional

to the abundance of the respective peptide (Figure 2B). The XICs of peptides

consistently identified and specific for each protein were summed up and

divided by the sum of XICs of the corresponding peptides obtained from

LC-MS/MS analysis of the purified fusion constructs PEX5R-HCN1 and

PEX5R-HCN2 serving as a standard. Using the XICs of the fused PEX5R as

a common reference, molar ratios of PEX5R, HCN1, and HCN2 were obtained.

The fraction of HCN isoforms 3 and 4 in the respective APs was calculated as

the difference between XICs of all subtype-specific HCN1–4 peptides and the

XICs of HCN1- and HCN2-specific peptides divided by the XICs of HCN1- and

HCN2-specific peptides identified with the purified standard fusion constructs

(Beynon et al., 2005).

Electrophysiology and Data Analysis of Recombinant HCN Channels

Electrophysiological recordings from giant inside-out patches excised from

oocytes were performed at room temperature (22�C–24�C) as described
previously (Zolles et al., 2006). Currents were recorded with an EPC9 amplifier,

low-pass filtered at 1 kHz, and sampled at 2 kHz; capacitive transients were

compensated with the automated circuit of the EPC9. Pipettes made from

thick walled borosilicate glass had resistances of 0.3–0.6 MU when filled

with (in mM): 120 KCl, 10 HEPES, and 1.0 CaCl2 (pH adjusted to 7.2). Intra-

cellular solution (Kint) applied via a gravity-driven multibarrel pipette was

composed as follows (mM): 100 KCl, 10 K2EGTA, 10 HEPES (pH 7.2). All

substances were dissolved and diluted to their final concentration in intra-

cellular solution. L-a-Phosphatidyl-D-myo-inositol-4,5-bisphosphate (PIP2,

Roche Molecular Diagnostics or Avanti Polar Lipids) was suspended in intra-

cellular solution at a concentration of 1 mM, sonicated for 10 min in a cold

water bath, aliquoted, and stored at �20�C. Samples were thawed on the

day of use, sonicated for another 10 min, and diluted to their final concentra-

tion of 10 mM with intracellular solution.

Steady-state activation curves were determined with a tail-current protocol.

Briefly, preconditioning voltage steps (from a holding potential of 0 mV) were

applied to potentials between �50 mV and �150 mV for durations ranging

between 1.5 s and 5 s, before the membrane potential was stepped to

50 mV for 500 ms to elicit HCN tail currents. Currents recorded at the tail poten-

tial were normalized to maximum, plotted versus the preconditioning potential,

and fitted with a Boltzmann function (see above). Curve fitting and further data

analysis were done with Igor Pro 4.05A on a Macintosh G4. Data are given as

mean ± SD, unless otherwise stated.

Preparation of Lentiviral Vectors

The HIV-derived lentiviral vector (CMV-GFP) was previously described (Pfeifer

et al., 2001). CMV-GFPPEX5R was generated by replacing the eGFP cDNA with

the coding sequence for the GFPPEX5R fusion protein. High-titer lentivector

preparations were produced as previously described (Pfeifer et al., 2002). In

brief, lentivector and packaging plasmids were transfected into HEK293T

cells. Lentiviral particles were pseudotyped with the G glycoprotein of the

vesicular stomatitis virus. Virus was harvested 48 and 72 hr after transfection,

concentrated by ultracentrifugation and resuspended in HBSS (Hanks’

Balanced Salt Solution).

Recordings from Early Embryonic Cardiomyocytes

Murine embryonic atria (E11.5) were harvested from CD1 mice, enzymatically

isolated and plated on gelatine-coated coverslips (Fleischmann et al., 2004).

The cells were infected with the lentiviral vectors CMV-GFP (control) or

CMV-GFPTrip8b/PEX5R in a volume of 300 ml. The transduced cells displayed

EGFP expression 2 days after transduction. For electrophysiological record-

ings, the coverslips were placed into a recording chamber, transduced cells

were identified using a fluorescence microscope, and patch-clamp experi-

ments performed in the whole-cell configuration as previously reported

(Fleischmann et al., 2004; Zolles et al., 2006). For most experiments, infection

with the two different constructs and electrophysiological measurements were

performed in parallel. The following solutions were used (in mM): extracellular

solution—140 NaCl, 5.4 KCl, 2.0 MgCl2, 1.8 CaCl2, 10 HEPES, 1 BaCl2, 2 4-

aminopyridine, 10 glucose (pH 7.4); intracellular solution—12 NaCl, 10 HEPES,

2 MgATP, 10 EGTA, 0.1 NaGTP, 130 K-aspartate (pH 7.2).

Data were sampled at 3 kHz and filtered with 0.5 kHz. Steady-state activa-

tion curves were determined using a 2 step I-V protocol: hyperpolarizing

voltage steps (2.5 s) were applied from �40 to �110 mV (10 mV increments)

from a holding potential of �40 mV, followed by a hyperpolarizing voltage

step (2.5 s) to �110 mV (frequency 0.1 Hz; Zolles et al., 2006). Available If
was determined by subtracting the current amplitude at the beginning of the

second voltage step from the mean current at the end of the step. V1/2 and

slope values were obtained from fits of a Boltzmann function to the data

described above. Current amplitudes (step from �40 mV to �110 mV) did

not significantly differ in control and CMV-GFPTrip8b/PEX5R transduced cells.

Isoprenaline (ISO) and 3-isobutyl-1-methylxanthine (IBMX, Sigma,

Germany) are known to strongly stimulate early embryonic cardiomyocytes

(Ji et al., 1999) and a final concentration of 100 nM ISO and 100 mM IBMX

were used to strongly stimulate If. For analysis, exclusively cells with stable

Rs values <15 MU during the experiment were used.
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Recordings from Organotypic Hippocampal Slice Cultures

Organotypic hippocampal slice cultures were prepared from mouse brain as

previously described (Del Turco and Deller, 2007). GFP and GFPPEX5R lentivi-

ral expression constructs were applied on the second day in vitro (2DIV) and

transduced GFP-positive CA1 neurons were studied at room temperature

using the whole-cell patch-clamp configuration as described (Lammel et al.,

2008). K-gluconate pipette solutions without or with 0.1 mM 8-Br-cAMP

were dialyzed in the whole-cell configuration (Rs < 10 MU) for at least 5 min

before Ih-currents were elicited in the voltage-clamp mode. Hyperpolarizing

voltage steps (2 s) were applied from �50 to �120 mV (10 mV increments)

from a holding potential of �50 mV, followed by a hyperpolarizing voltage

step (0.5 s) to �100 mV or �120 mV. Conductance-voltage (g-V) relationships

were constructed based on tail current amplitudes and fitted with Boltzmann

functions to determine the values for V1/2 and slopes of Ih currents in CA1

neurons expressing GFP or GFPPEX5R. Mean normalized g-V relationships

were constructed by averaging individual normalized g-V data of n = 4–8

CA1 neurons and fitted with a Boltzmann function.

SUPPLEMENTAL DATA

Supplemental Data include three figures and can be found with this article

online at http://www.cell.com/neuron/supplemental/S0896-6273(09)00359-6.
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