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Introduction
Mitochondria from the baker’s yeast Saccharomyces cerevisiae 

are residence to �1,000 different proteins (Sickmann et al., 

2003; Prokisch et al., 2004; Reinders et al., 2006). The vast ma-

jority of mitochondrial proteins is nuclear encoded, synthesized 

as precursors on cytosolic ribosomes, and must subsequently be 

transported into the organelle. This challenging task of precursor 

delivery and integration into one of the four mitochondrial sub-

compartments (mitochondrial outer membrane, intermembrane 

space, inner membrane, and matrix) is essential for organelle 

biogenesis and ultimately for eukaryotic cell viability (Dolezal 

et al., 2006; Neupert and Hermann, 2007). Accordingly, the 

presence of dynamic translocation and assembly machineries 

within all four mitochondrial subcompartments permits the ef-

fective recognition, translocation, and sorting of mitochondrial 

precursors (Jensen and Johnson, 2001; Hoogenraad et al., 2002; 

Endo et al., 2003; Koehler, 2004; Rehling et al., 2004; Oka and 

Mihara, 2005).

A crossroads in the import of all nuclear-encoded precur-

sors takes place at the level of the outer membrane, where they 

encounter the translocase of outer membrane (TOM) complex 

(Gabriel et al., 2003; Pfanner et al., 2004; Rapaport, 2005; for 

review see Ryan, 2004). This multisubunit machine effectively 

translocates precursors across the outer membrane, upon which 

there is a specifi c segregation of import pathways induced by 

sorting elements within precursors. In yeast, the 450-kD TOM 

complex consists of the general protein import channel, which 

is formed by the β-barrel protein Tom40, the import receptors 

Tom20 and Tom22, as well as three small Tom proteins (Tom5, 

Tom6, and Tom7), which are involved in assembly and stability 

of the TOM complex (Hill et al., 1998; Meisinger et al., 2001, 

2004; Model et al., 2001, 2002). In addition, the receptor Tom70 

forms a homodimer that transiently interacts with the TOM com-

plex and facilitates the transfer of hydrophobic precursor pro teins 

from cytosolic chaperones to the TOM complex (Wiedemann 

et al., 2001; Young et al., 2003). All Tom precursors are encoded 

by the nuclear genome and must also be imported into mito-

chondria and assembled into the TOM complex, a process for 

which they require the presence of preexisting TOM machinery 

(Keil and Pfanner, 1993; Dembowski et al., 2001; Model et al., 

2001; Rapaport et al., 2001; Wiedemann et al., 2003; Nakamura 

et al., 2004).

Although the TOM complex is involved in the import of 

several hundred different mitochondrial precursor proteins, it 

is not capable of integrating β-barrel precursors into the mito-

chondrial outer membrane, such as Tom40 and the most abun-

dant outer membrane protein, porin. Membrane insertion of 

β-barrel proteins requires the sorting and assembly machinery 

(SAM) complex of the outer membrane. The SAM complex is 
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T
he mitochondrial outer membrane contains two 

 preprotein translocases: the general translocase of 

outer membrane (TOM) and the β-barrel–specifi c 

sorting and assembly machinery (SAM). TOM functions 

as the central entry gate for nuclear-encoded proteins. 

The channel-forming Tom40 is a β-barrel protein, whereas 

all Tom receptors and small Tom proteins are membrane 

anchored by a transmembrane α-helical segment in their 

N- or C-terminal portion. Synthesis of Tom precursors 

takes place in the cytosol, and their import occurs via pre-

existing TOM complexes. The precursor of Tom40 is then 

transferred to SAM for membrane insertion and assembly. 

Unexpectedly, we fi nd that the biogenesis of α-helical Tom 

proteins with a membrane anchor in the C-terminal por-

tion is SAM dependent. Each SAM protein is necessary 

for effi cient membrane integration of the receptor Tom22, 

whereas assembly of the small Tom proteins depends on 

Sam37. Thus, the substrate specifi city of SAM is not re-

stricted to β-barrel proteins but also includes the majority 

of α-helical Tom proteins.
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composed of three core constituents: Sam37 (Mas37), which 

was the fi rst identifi ed component (Wiedemann et al., 2003), 

and the two essential proteins Sam50 (Tob55/Omp85; Kozjak 

et al., 2003; Paschen et al., 2003; Gentle et al., 2004) and Sam35 

(Tob38/Tom38; Ishikawa et al., 2004; Milenkovic et al., 2004; 

Waizenegger et al., 2004). Sam50 is an integral membrane pro-

tein conserved from bacteria to humans. Its bacterial counter-

part, Omp85/YaeT, is required for the insertion of β-barrel 

proteins into the outer membrane of Gram-negative bacteria 

(Voulhoux et al., 2003; Bos and Tommassen, 2004; Humphries 

et al., 2005; Schleiff and Soll, 2005; Dolezal et al., 2006; Ruiz 

et al., 2006; Kozjak-Pavlovic et al., 2007; for review see Ryan, 

2004). Sam35 and Sam37 behave as peripheral membrane pro-

teins that are anchored to the outer membrane by their tight as-

sociation with Sam50.

Tom40 is the only β-barrel Tom protein, whereas the 

other Tom subunits are anchored in the outer membrane by a 

transmembrane α helix. Tom20 and Tom70 contain a mem-

brane anchor at the N terminus, whereas Tom22 and the small 

Tom proteins are anchored in the outer membrane by a mem-

brane anchor that is located at the C terminus (Tom5, Tom6, 

and Tom7) or in the C-terminal half of the protein (Tom22). 

The targeting signals of the α-helical Tom proteins are typi-

cally contained in the transmembrane segment and hydro-

philic fl anking regions (Cao and Douglas, 1995; Egan et al., 1999; 

Kanaji et al., 2000; Dembowski et al., 2001; Allen et al., 2002; 

Habib et al., 2003; Horie et al., 2003; Waizenegger et al., 2003). 

Import of the precursors of α-helical Tom proteins into mito-

chondria was shown to require various components of pre-

existing TOM complexes (Schneider et al., 1991; Keil and 

Pfanner, 1993; Dembowski et al., 2001; Nakamura et al., 2004; 

Ahting et al., 2005; Rapaport, 2005). Late steps of the assembly 

of Tom40 as well as of α-helical Tom proteins are promoted 

by mitochondrial distribution and morphology (Mdm) proteins 

(Meisinger et al., 2004, 2006, 2007). Based on the similarity to 

the bacterial Omp85 machinery, it was concluded that the SAM 

complex played a selective role in the biogenesis of β-barrel 

proteins (Pfanner et al., 2004; Paschen et al., 2005; Dolezal 

et al., 2006; for review see Ryan, 2004). This conclusion was 

underscored by the fi nding that the import of Tom20 was not 

impaired by inactivation of SAM components (Paschen et al., 

2003; Milenkovic et al., 2004; Waizenegger et al., 2004). The 

current view thus includes that α-helical Tom proteins are im-

ported by preexisting TOM complexes and assembled with the 

help of Mdm proteins, whereas the SAM complex is dedicated 

to the biogenesis of β-barrel proteins and is not relevant for 

α-helical proteins.

In this study, we report the surprising observation that the 

SAM complex is involved in the biogenesis of several α-helical 

subunits of the TOM complex. All three SAM subunits are re-

quired for the effi cient membrane integration of Tom22, whereas 

the small Tom members display a requirement on Sam37 for 

their assembly into the TOM complex. These results point to a 

novel function for the SAM complex in the biogenesis of alter-

native mitochondrial outer membrane precursors and expand 

the substrate specificity of this machinery beyond that of 

β-barrel precursors.

Results
The membrane-integral SAM subunit 
Sam50 is involved in the biogenesis 
of Tom22
We used a temperature-sensitive yeast mutant of SAM50 

(sam50-1) that has been used in defi ning the role of the es-

sential protein Sam50 in the biogenesis of β-barrel precursors 

(Kozjak et al., 2003). To probe for the spectrum of proteins 

affected by a defect of Sam50 in vivo, we shifted the cells 

to the nonpermissive temperature of 37°C for 10 h before 

isolation of mitochondria. Analysis of the steady-state pro-

tein levels of sam50-1 mitochondria by immunodecoration 

revealed a surprising reduction in the levels of Tom22 in 

comparison with wild-type mitochondria (Fig. 1 A). The re-

duction occurred to a comparable level as that of the β-barrel 

proteins Tom40 and porin, whereas Tom5, Tom70, OM45, and 

Fzo1 of the outer membrane, the intermembrane space resi-

dent Mia40, and the matrix-located Ssc1 remained unaffected 

(Fig. 1 A).

To minimize indirect pleiotropic effects, we grew the 

yeast cells at the permissive temperature of 23°C, isolated mito-

chondria, and induced the mutant phenotype in vitro by incu-

bation of the mitochondria for 15 min at 37°C. Under these 

conditions, the levels of preexisting TOM complex as well as 

of individual Tom subunits were comparable between sam50-1 

and wild-type mitochondria, and the mutant mitochondria 

were fully competent in transporting precursor proteins through 

TOM to internal mitochondrial compartments (Kozjak et al., 

2003). Tom22 was synthesized as radiolabeled precursor in rabbit 

reticulocyte lysate and imported into the isolated mito chondria. 

Assembly into the TOM complex was directly moni tored by 

blue native electrophoresis upon lysis of the mitochondria with 

digitonin (Model et al., 2001; Meisinger et al., 2004). Assembly 

of Tom22 was inhibited in mitochondria from sam50-1 cells 

in comparison with that of the corresponding wild-type mito-

chondria (Fig. 1 B, lanes 7–12), indeed indicating an involve-

ment of Sam50 in the biogenesis of Tom22. The defect in 

Tom22 assembly depended on induction of the mutant pheno-

type, as in the absence of an in vitro heat shock, import and 

assembly of Tom22 in sam50-1 mitochondria was indistin-

guishable from that of wild-type mitochondria (Fig. 1 B, lanes 

1–6). As controls, we imported the radiolabeled precursors of 

Tom40, Tom20, and Tom70 into heat-treated mitochondria. 

In wild-type mitochondria, Tom40 assembly occurred via inter-

mediates of 250 kD (assembly I, corresponding to the SAM 

complex) and 100 kD (assembly II, refl ecting the association 

of Tom5 with Tom40) before maturation into the TOM com-

plex (Wiedemann et al., 2003; Meisinger et al., 2004), whereas 

in sam50-1 mitochondria, the assembly was strongly inhibited 

(Fig. 1 C; Kozjak et al., 2003). In contrast, Tom20 assembly 

into the TOM complex and Tom70 assembly to the mature 

homodimer occurred with similar effi ciency in wild-type and 

sam50-1 mitochondria (Fig. 1 D). We conclude that mitochon-

dria with a defective Sam50 are not only impaired in the as-

sembly pathway of the β-barrel protein Tom40 but also the 

α-helical protein Tom22.
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Both peripheral SAM proteins Sam35 
and Sam37 affect the assembly pathway 
of Tom22
We asked whether the two peripheral SAM proteins Sam35 and 

Sam37, which expose domains at the cytosolic side, also affect 

the biogenesis pathway of Tom22. The essential protein Sam35 

was addressed through use of the temperature-sensitive yeast 

mutant sam35-2 (Milenkovic et al., 2004). The cells were ex-

posed to an in vivo heat shock at 37°C for 10 h, and mitochon-

dria were isolated and analyzed for steady-state protein levels. 

Remarkably, the level of Tom22 in the sam35-2 mutant mito-

chondria was reduced to a greater extent than that of Tom40, 

whereas further proteins analyzed were present in similar 

amounts as in wild-type mitochondria (Fig. 2 A). For protein 

import experiments, we used sam35-2 mitochondria that were 

isolated from cells grown at permissive conditions. Before incu-

bation with radiolabeled precursor proteins, the isolated mito-

chondria were subjected to a short-term shift to nonpermissive 

conditions (37°C). Similar to the situation with sam50-1 mito-

chondria, the sam35-2 mitochondria retain wild-type levels of 

the TOM complex in addition to all of the mitochondrial marker 

proteins analyzed and effi ciently import precursor proteins to 

internal mitochondrial compartments (Milenkovic et al., 2004). 

However, the assembly of Tom22 was strongly inhibited in 

sam35-2 mitochondria (Fig. 2 B). As controls, the import of 

Tom40 displayed the classic defect in β-barrel protein assem-

bly, whereas the import of Tom20 and Tom70 remained un-

affected (Fig. 2, C and D; Milenkovic et al., 2004). Thus, the 

second essential SAM protein, Sam35, also affects the assem-

bly pathway of the precursor of Tom22.

Yeast cells lacking Sam37 are viable but are impaired in 

growth at elevated temperature (Gratzer et al., 1995; Wiedemann 

et al., 2003). sam37∆ cells grown at 30°C not only showed 

reduced levels of Tom40 as reported previously (Wiedemann 

et al., 2003) but the levels of Tom22 were also strongly reduced 

(Fig. 3 A). For analysis of protein import, we grew the cells 

at 23°C, at which the endogenous levels of the TOM complex 

remained unaffected (Wiedemann et al., 2003). Import of radio-

labeled Tom22 into isolated sam37∆ mitochondria revealed a 

similar assembly defect (Fig. 3 B) as observed for sam50-1 and 

Figure 1. Sam50 is required for the biogenesis of Tom22. (A) Mitochondria were isolated from wild-type and sam50-1 yeast cells after a 10-h in vivo heat 
shock at 37°C. Mitochondrial proteins were subjected to SDS-PAGE and immunodecoration. (B) Wild-type (WT) and sam50-1 cells were grown at 23°C. 
Mitochondria were isolated and preincubated at 25°C for 2 min (lanes 1–6) or for 37°C for 15 min (lanes 7–12). Import of the 35S-labeled precursor of 
Tom22 was performed at 25°C for the indicated times. Mitochondria were isolated, lysed in digitonin-containing buffer, and subjected to blue native elec-
trophoresis and digital autoradiography. The asterisk indicates the low molecular weight form of the Tom22 assembly pathway. (C) The experiment was 
performed as described for B except that the 35S-labeled Tom40 precursor was used. (D) The 35S-labeled Tom20 (top) and Tom70 (bottom) precursors were 
imported in mitochondria from wild-type and sam50-1 as described for B.
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sam35-2 mitochondria. Assembly of Tom40 displayed an arrest 

at a smaller form of assembly intermediate I that refl ected the 

crippled SAM complex lacking Sam37 (Fig. 3 C; Wiedemann 

et al., 2003), whereas assembly of Tom20 and Tom70 proceeded 

as effi ciently as in wild-type mitochondria (Fig. 3 D).

Thus, mutants of each of the three SAM proteins display a 

similar defect in the biogenesis of Tom22 in vivo and in vitro, 

whereas the assembly of Tom20 and Tom70 is not affected. 

Therefore, these α-helical Tom proteins use different assembly 

pathways. The pathway of Tom22 possesses some parallels to 

that of β-barrel precursors, displaying a requirement on all three 

components of the SAM complex for import and assembly into the 

outer membrane. β-barrel precursors are transferred from the 

TOM complex to the SAM complex with the help of TIM (trans-

locase of inner membrane) chaperone complexes of the inter-

membrane space (Hoppins and Nargang, 2004; Wiedemann et al., 

2004). Thus, we asked whether Tom22 displayed a similar depen-

dence on intermembrane space chaperones during its biogenesis. 

Isolated mitochondria were subjected to swelling to generate 

mitoplasts, permitting the release of soluble intermembrane space 

components, including the TIM chaperone complexes (Wiedemann 

et al., 2004). The assembly pathway of Tom22 was not inhibited 

by the swelling of mitochondria (Fig. 4 A), whereas the biogene-

sis pathway of Tom40 was blocked, and assembly intermediate I 

(SAM intermediate) was not formed as has been reported previ-

ously (Fig. 4 B; Wiedemann et al., 2004). We conclude that the 

biogenesis pathway of Tom22 resembles that of β-barrel precur-

sors with regard to the dependence on SAM components; how-

ever, its transfer to the SAM complex does not require the soluble 

chaperone complexes of the intermembrane space.

Integration of Tom22 into the outer 
membrane is impaired in mutants of 
Sam50, Sam37, and Sam35
We noticed that the blue native assays for assembly of Tom22 

into the TOM complex also revealed a low molecular weight 

Figure 2. Sam35 is required for the biogenesis of Tom22. (A) Mitochondria were isolated from wild-type and sam35-2 yeast cells after a 10-h in vivo heat 
shock at 37°C. Mitochondrial proteins were subjected to SDS-PAGE and immunodecoration. (B) Wild-type (WT) and sam35-2 cells were grown at 23°C. 
Mitochondria were isolated and preincubated at 37°C for 15 min, and import of 35S-labeled Tom22 was performed at 25°C for the indicated times. Mito-
chondria were isolated, lysed in digitonin-containing buffer, and subjected to blue native electrophoresis and digital autoradiography. The asterisk indicates 
the low molecular weight form of the Tom22 assembly pathway. (C) The experiment was performed as outlined for B, but 35S-labeled Tom40 was used. 
(D) Import of 35S-labeled Tom20 (top) and Tom70 (bottom) precursors in mitochondria from wild-type and sam35-2 was performed as described for B.

 on M
arch 20, 2013

jcb.rupress.org
D

ow
nloaded from

 
Published November 26, 2007

http://jcb.rupress.org/


MITOCHONDRIAL OUTER MEMBRANE BIOGENESIS • STOJANOVSKI ET AL. 885

form that was reduced in mitochondria from all three sam mu-

tants (Figs. 1 B, 2 B, and 3 B; asterisks). It was possible that this 

low molecular weight species represented an intermediate stage 

in the biogenesis of Tom22, and, therefore, we characterized it 

further. Like the mature TOM complex (Meisinger et al., 2001), 

the low molecular weight species was resistant to treatment of 

mitochondria with high concentrations of salt (Fig. 5 A), sug-

gesting that it was stably associated with the mitochondrial 

membranes. Upon treatment of mitochondria with trypsin, the 

mature TOM complex and the low molecular weight form of 

Tom22 migrated faster on the blue native gels (Fig. 5 B, left). 

To determine whether the low molecular weight form of Tom22 

was correctly oriented within the lipid bilayer, we performed a 

2D analysis of trypsin-treated mitochondria (i.e., blue native 

separation followed by denaturing SDS-PAGE). An identical 

profi le consisting of three characteristic fragments was observed 

for Tom22 from both the mature TOM complex and the low 

molecular weight form (Fig. 5 B, right), whereas Tom22 was 

completely degraded when the membranes were lysed with de-

tergent before the protease treatment (Keil and Pfanner, 1993). 

Thus, the low molecular weight species of Tom22 was inserted 

into the outer membrane in the same orientation as Tom22 in 

the mature TOM complex. We used antibodies directed against 

various mitochondrial outer membrane and intermembrane 

space proteins, but none of them recognized this species of 

Tom22 (unpublished data). Indeed, the mobility of this species 

on blue native gels was not altered by harsh treatments, includ-

ing heating in the presence of SDS and reductant (Fig. 5 C) that 

leads to the dissociation of all known mitochondrial translocase 

complexes, indicating that it represented monomeric Tom22 

(the mobility of membrane proteins in the low molecular weight 

range of blue native gels is often slower than that of soluble 

marker proteins; Wiedemann et al., 2001, 2003). These results 

suggest that the monomeric form of Tom22 was correctly inte-

grated into the outer membrane of wild-type mitochondria.

Thus, we asked why the levels of the low molecular weight 

form of Tom22 were reduced in all three sam mutants and won-

dered whether this indicated an early preassembly function 

of the SAM complex in the biogenesis pathway of Tom22. 

We searched for an outer membrane mutant that differentially 

Figure 3. Sam37 is required for the biogenesis of Tom22. (A) Mitochondria were isolated from wild-type and sam37∆ yeast cells grown at 30°C 
and analyzed by SDS-PAGE and immunodecoration. (B) Wild-type (WT) and sam37∆ cells were grown at 23°C, and mitochondria were isolated. 
35S-labeled Tom22 was imported at 25° for the indicated times and analyzed by blue native electrophoresis and digital autoradiography. The asterisk 
indicates the low molecular weight form of the Tom22 assembly pathway. (C) Import of the 35S-labeled Tom40 precursor was performed as described 
for B. (D) The experiment was performed as outlined for B, but the 35S-labeled precursors of Tom20 (top) and Tom70 (bottom) were imported into 
isolated mitochondria.
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affected assembly of Tom22 into the mature TOM complex and 

formation of the low molecular weight form. We found that 

mitochondria lacking Tom5 displayed a differential effect. Tom5 

has been shown to associate with Tom40 at a post-SAM stage 

(assembly II; Wiedemann et al., 2003; Meisinger et al., 2004). 

In tom5∆ mitochondria, assembly of Tom22 into the TOM com-

plex was reduced, whereas the low molecular weight form ac-

cumulated in increased amounts (Fig. 5 D). To probe for the 

membrane integration of Tom22, we treated the mitochondria at 

alkaline pH, conditions that lead to the extraction of soluble and 

peripheral membrane proteins, whereas integral membrane pro-

teins remain membrane inserted (Fujiki et al., 1982; Burri et al., 

2006; Stojanovski et al., 2007). The precursor of Tom22 was 

imported into isolated mitochondria that were subsequently 

treated with sodium carbonate, pH 11.5. Membrane-integrated 

species were isolated through ultracentrifugation and separated 

by SDS-PAGE. Fig. 5 E shows that the membrane integration of 

Tom22 occurred with similar effi ciency in wild-type and tom5∆ 

mitochondria, indicating that Tom22, which was accumulated 

in the low molecular weight form in tom5∆ mitochondria, was 

already integrated into the outer membrane but not yet assem-

bled into the TOM complex.

We asked whether the SAM complex participated in the 

biogenesis of Tom22 in a pre- or postmembrane integration 

manner. 35S-labeled Tom22 was imported into sam50-1, sam35-2, 

and sam37∆ mitochondria followed by treatment at alkaline 

pH. We observed a decrease in the effi ciency of Tom22 mem-

brane integration in all three mutants; Tom22 insertion was not 

blocked completely but proceeded at a reduced level (Fig. 5 F). 

For comparison, the membrane integration of Tom20 and Tom70 

was not affected by the sam mutant mitochondria (Fig. 5 F), 

excluding the possibility that the sam mutants indirectly altered 

the extractability of Tom proteins from mitochondria at alkaline 

pH. Thus, the three SAM proteins are required for the biogene-

sis of Tom22 at a different stage than Tom5. Although Tom5 

is not required for membrane integration of Tom22 but only 

for the subsequent assembly reaction, the subunits of the SAM 

complex increase the effi ciency of the membrane insertion 

of Tom22.

We asked whether the SAM complex may also be involved 

in the biogenesis of further α-helical outer membrane proteins 

and monitored the import of various proteins into sam50-1, 

sam35-2, and sam37∆ mitochondria by extraction with alkaline 

pH. Additionally, blue native electrophoresis was used for pro-

teins that migrated as complexes on native gels. We tested the 

following proteins: C tail–anchored Fis1 (Mozdy et al., 2000; 

Tieu and Nunnari, 2000) and Gem1 (Fig. 6 A; Frederick et al., 

2004), N-terminally anchored OM45 (Fig. 6 B; Yaffe et al., 

1989; Waizenegger et al., 2004), and proteins that have more 

than one transmembrane domain, Fzo1 (Hermann et al., 1998; 

Rapaport et al., 1998) and Ugo1 (Fig. 6, C and D; Sesaki and 

Jensen, 2001; Coonrod et al., 2007). None of these proteins 

showed a dependence on a functional SAM complex for inte-

gration into the outer membrane. Thus, the results obtained 

so far indicated that the biogenesis of Tom22 but not of other 

α-helical outer membrane proteins required the SAM complex.

A role for Sam37 in the assembly of small 
Tom proteins
Finally, we asked whether the assembly pathway of the remaining 

three α-helical subunits of the TOM complex (the small proteins 

Tom5, Tom6, and Tom7) depended on SAM. The 35S-labeled 

Figure 4. Swelling of mitochondria blocks the assembly pathway of Tom40 but not of Tom22. Mitochondria isolated from wild-type yeast cells were pre-
incubated in isotonic buffer or hypotonic (swelling) buffer for 30 min on ice. The mitochondria/mitoplasts were isolated and incubated with the 35S-labeled 
precursors of Tom22 (A) and Tom40 (B) at 25°C for the indicated times. Mitochondria were reisolated, lysed in digitonin-containing buffer, and subjected 
to blue native electrophoresis and digital autoradiography. The asterisk indicates the low molecular weight form of the Tom22 assembly pathway.
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precursors were imported into isolated mitochondria from 

wild-type and sam50-1 yeast cells, and assembly was moni-

tored by blue native electrophoresis. Contrary to that of Tom22, 

the small Tom members displayed no major assembly defect in 

sam50-1 mitochondria (Fig. 7 A). In a similar manner, import of 

the small Tom proteins into mitochondria isolated from sam35-2 

yeast cells also revealed no substantial assembly defect (Fig. 7 B). 

Thus, mutants of the two essential SAM proteins did not inhibit 

the biogenesis of small Tom proteins.

Surprisingly, the corresponding analysis in mitochondria 

isolated from sam37∆ yeast cells disclosed a noticeable assem-

bly defect for all three small Tom proteins relative to that of mito-

chondria isolated from wild-type cells (Fig. 8 A). The small 

Tom proteins were previously shown to assemble via an inter-

mediate stage of �100 kD, likely refl ecting the assembly inter-

mediate II of Tom40; defects in late steps of TOM assembly in 

mitochondria lacking Mdm10 or individual small Tom proteins 

led to an accumulation of the 100-kD intermediate (Model 

et al., 2001; Meisinger et al., 2004). For Tom6 and, to a smaller 

extent, also for Tom5, we indeed observed increased amounts of 

the precursors in the 100-kD form in sam37∆ mitochondria 

compared with wild-type mitochondria (Fig. 8 A), raising the 

possibility that Sam37 was required at a late stage in the assem-

bly of small Tom proteins. This view was supported by the un-

altered levels of Tom5 in mitochondria isolated from sam50-1 

(Fig. 1 A), sam35-2 (Fig. 2 A), and sam37∆ yeast (Fig. 3 A) after 

in vivo growth at elevated temperature.

Thus, we addressed the role of Sam37 in the integration of 

small Tom proteins into the membrane by sodium carbonate 

treatment. The 35S-labeled small Tom precursors were imported 

Figure 5. The SAM complex is involved in the integration of Tom22 into the outer membrane. (A) 35S-labeled Tom22 precursor was imported into 
wild-type mitochondria. Mitochondria were isolated and resuspended in SEM buffer containing the indicated NaCl concentration and incubated on ice 
for 10 min. Mitochondria were reisolated, washed in SEM buffer, lysed in digitonin-containing buffer, and subjected to blue native electrophoresis and 
digital autoradiography. (B) 35S-labeled Tom22 precursor was imported into isolated wild-type mitochondria and, after import, was incubated with the 
indicated concentration of trypsin for 10 min on ice. Trypsin was inhibited by the addition of 30-fold excess soybean trypsin inhibitor and incubation on 
ice for a further 10 min. Mitochondria were isolated, washed in SEM buffer, and treated for blue native electrophoresis (left). After electrophoresis, samples 
treated with 0 and 50 μg/ml trypsin were analyzed by SDS-PAGE in the second dimension (right). (C) 35S-labeled Tom22 precursor was imported into 
wild-type mitochondria. After import, mitochondria were isolated and lysed in digitonin-containing buffer with the indicated amounts of SDS and DTT. 
Samples were incubated for 15 min on ice (lanes 1–5) or at 95°C for 5 min (lane 6). (D) 35S-labeled Tom22 precursor was imported into isolated mitochon-
dria from wild-type (WT) and tom5∆ cells (grown at 23°C) for the indicated times. The mitochondria were reisolated, lysed in digitonin-containing buffer, 
and subjected to blue native electrophoresis and digital autoradiography. (A–D) Asterisks indicate the low molecular weight forms of the Tom22 assembly 
pathway. (E) Import of Tom22 was performed as described for D. The reisolated mitochondria were treated with 0.1 M Na2CO3, pH 11.5, for 30 min 
on ice. Membrane sheets were isolated by ultracentrifugation, solubilized in laemmli buffer, and analyzed by Tris-tricine gel electrophoresis and digital 
autoradiography. (F) 35S-labeled precursors of Tom22, Tom70, or Tom20 were imported into isolated mitochondria from wild-type, sam50-1, sam35-2, and 
sam37∆ yeast for the indicated times. The reisolated mitochondria were treated with Na2CO3 and analyzed as  described for E.
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into mitochondria from the sam37∆ strain, and then the mito-

chondria were treated at pH 11.5 for the separation of integral 

and peripheral membrane proteins. The integration of Tom5, 

Tom6, and Tom7 took place to a comparable extent in mito-

chondria from wild-type and sam37∆ cells (Fig. 8 B), indicating 

that Sam37 was required for the assembly of small Tom proteins 

in a postmembrane integration manner.

The lack of Sam37 has been shown to impair the associa-

tion of Mdm10 with the SAM complex (Meisinger et al., 2006). 

Given that mitochondria lacking Mdm10 display a similar 

assembly defect for the small Tom proteins (Meisinger et al., 

2004), we wondered whether the assembly defect observed 

for the small Tom proteins in sam37∆ mitochondria could be 

solely attributed to the loss of Mdm10 association with SAM. 

To address this issue, we generated a strain that was lacking 

both Sam37 and Mdm10. At all temperatures tested, growth of 

the double deletion strain was more compromised than that of 

mdm10∆, with a complete inability for growth at 37°C (Fig. 8 C), 

indicating that the lack of both proteins leads to a stronger 

phenotype than the loss of Mdm10 alone. Mitochondria were 

isolated from both mdm10∆ and mdm10∆ sam37∆ yeast cells 

that were grown at low temperature to minimize indirect effects. 

Blue native electrophoresis and subsequent immunoblotting 

monitored assembly of the small Tom protein Tom5. In mdm10∆ 

mitochondria, the amount of Tom5 in the mature 450-kD TOM 

complex was reduced compared with wild-type mitochondria, 

and the 100-kD form could be observed (Fig. 8 D, lane 2). 

The pattern observed in mitochondria from the mdm10∆ sam37∆ 

double deletion differed considerably from that of mdm10∆ 

mitochondria, revealing strongly reduced amounts of the ma-

ture TOM complex and the presence of additional intermedi-

ate complexes (Fig. 8 D, lane 3). We conclude that both Sam37 

and Mdm10 are involved in the late assembly steps of small 

Tom proteins.

Figure 6. Import and assembly of non-Tom outer membrane precursors occurs independently of the SAM complex. (A) 35S-labeled precursors of Fis1 (top) 
and Gem1 (bottom) were imported into mitochondria from wild-type (WT), sam50-1, sam35-2, and sam37∆ yeast cells for the indicated times. After, 
import-isolated mitochondria were treated with 0.1 M Na2CO3, pH 11.5, for 30 min on ice. Membranes were isolated by ultracentrifugation, solubilized in 
laemmli buffer, and analyzed by Tris-tricine gel electrophoresis and digital autoradiography. (B) 35S-labeled OM45 precursor was imported as described 
in A. Mitochondria were solubilized in digitonin-containing buffer for blue native electrophoresis (top) or treated with 0.1 M Na2CO3, pH 11.5, for SDS-
PAGE analysis (bottom). (C) 35S-labeled Fzo1 precursor was imported, and samples were treated as described for A. (D) The 35S-labeled precursor of Ugo1 
was imported as described for A. Mitochondria were solubilized in digitonin-containing buffer for blue native electrophoresis (top) or treated with 0.1 M 
Na2CO3, pH 11.5, for SDS-PAGE analysis (bottom).
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Discussion
We report a new function of the SAM complex. To date, this 

mitochondrial SAM was considered to be a β-barrel–specifi c 

machinery, which is also refl ected in the alias name TOB (topo-

genesis of outer membrane β-barrel proteins). We show that the 

majority of α-helical subunits of the TOM complex depend on 

functional SAM for proper assembly.

The previous view that SAM was exclusively dedicated 

to β-barrel proteins was based on several observations. First, 

all β-barrel precursors analyzed depended on SAM (Tom40, 

porin, Sam50, and Mdm10). Second, Tom20, which carries an 

N-terminal α-helical transmembrane segment, was effi ciently 

imported and assembled in mutants of SAM proteins (Paschen 

et al., 2003; Milenkovic et al., 2004; Waizenegger et al., 2004; 

this study). Third, the similarity to the bacterial Omp85/YaeT 

system of protein assembly suggested that the mitochondrial 

Sam50 machinery was also dedicated to the assembly of β-barrel 

proteins only. However, in the bacterial outer membrane, 

β-barrel proteins are the predominant membrane-integral 

proteins, and, thus, α-helical proteins have not been studied 

(Schulz, 2002; Ruiz et al., 2006). In contrast, the mitochondrial 

outer membrane contains more α-helical proteins than β-barrel 

proteins (Rapaport, 2003; Burri et al., 2006; Schmitt et al., 2006; 

Zahedi et al., 2006).

The fi rst indication that SAM may be involved in the bio-

genesis of α-helical proteins was obtained in vivo by determin-

ing the steady-state levels of Tom22 upon the growth of yeast 

mutants of Sam50, Sam35, and Sam37 at elevated temperature. 

In each case, a decrease in the level of Tom22 was observed 

comparable with the decrease of Tom40. In agreement with 

these observations, Hoppins et al. (2007) disclosed a reduction 

in Tom22 levels in a SAM50 sheltered knockout strain in Neuro-
spora crassa, although the effect was attributed as secondary 

because of reduced Tom40 levels. However, the use of a temper-

ature-conditional SAM50 mutant in our analysis clearly dis-

misses Tom40 levels as the causative factor for the reduction in 

Tom22 levels. A direct analysis of Tom22 assembly in isolated 

mitochondria by blue native electrophoresis demonstrated a re-

quirement on each of the three SAM proteins for incorporation 

of the receptor into the TOM complex. We dissected the bio-

genesis pathway of Tom22 into two consecutive steps: (1) mem-

brane insertion observed as a low molecular weight form on 

blue native electrophoresis and (2) assembly into the 450-kD 

TOM complex. The small Tom protein Tom5 permitted separa-

tion of both steps, as mutant mitochondria lacking Tom5 were 

only impaired in the second (assembly) stage and, thus, accu-

mulated the membrane-inserted low molecular weight form. 

However, mutants of each of the SAM proteins not only inhib-

ited the assembly of Tom22 into the 450-kD complex but also 

reduced the effi ciency of the membrane insertion of Tom22. 

Thus, the import pathway of the precursor of Tom22 involves 

initial targeting via the TOM complex (Keil and Pfanner, 1993) 

and, thus, a loose association with the mitochondrial surface fol-

lowed by SAM-stimulated insertion into the outer membrane.

A different picture was observed for the three small Tom 

proteins. Import and assembly of Tom5, Tom6, and Tom7 were 

not inhibited in mutants of the two essential SAM proteins 

Sam50 and Sam35. Surprisingly, mitochondria lacking Sam37 

displayed defects in assembly of the small Tom proteins into the 

450-kD TOM complex, whereas the preceding step of mem-

brane insertion was not impaired in the mutant mitochondria. 

Figure 7. Assembly of Tom5, Tom6, and Tom7 is independent of Sam50 and Sam35. (A) 35S-labeled Tom5 (lanes 1–6), Tom6 (lanes 7–12), and Tom7 
(lanes 13–18) precursors were imported into isolated mitochondria from wild-type (WT) and sam50-1 yeast cells for the indicated times. Mitochondria were 
isolated, lysed in digitonin-containing buffer, and subjected to blue native electrophoresis and digital autoradiography. (B) 35S-labeled Tom5 (lanes 1–6), 
Tom6 (lanes 7–12), and Tom7 (lanes 13–18) precursor proteins were imported into isolated mitochondria from wild-type and sam35-2 yeast for the indi-
cated times. Mitochondria were isolated, lysed in digitonin-containing buffer, and subjected to blue native electrophoresis.
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This late function of Sam37 in TOM assembly resembles that of 

Mdm10. Mitochondria lacking Mdm10 are impaired in the fi nal 

steps of assembly of Tom40, Tom22, and small Tom proteins 

(Meisinger et al., 2004). Cells lacking Mdm10 are viable at low 

temperature but are impaired in growth at elevated temperature, 

like cells lacking Sam37 (Gratzer et al., 1995; Wiedemann 

et al., 2003; Meisinger et al., 2004). A fraction of Mdm10 has 

been shown to interact with the SAM complex in a Sam37-

dependent manner to promote the fi nal maturation steps of the 

TOM complex (Meisinger et al., 2004, 2006, 2007). However, 

the role of Sam37 cannot solely be attributed to a recruitment 

of Mdm10 to the SAM complex, as a double mutant lacking 

both Sam37 and Mdm10 shows a stronger defect both in cell 

growth and in small Tom assembly. For the assembly pathway 

of Tom22, the function of Sam37 is required earlier than that 

of Mdm10; Sam37 together with Sam50 and Sam35 promote 

membrane insertion of monomeric Tom22, whereas mitochon-

dria lacking Mdm10 can insert Tom22 into the outer membrane 

and are impaired in the subsequent assembly steps (Meisinger 

et al., 2004). Collectively, we conclude that both Sam37 and 

Mdm10 function in TOM assembly, affecting the β-barrel pro-

tein Tom40 and the α-helical proteins Tom22, Tom5, Tom6, and 

Tom7. However, this function of Sam37 and Mdm10 does not 

include all α-helical Tom proteins because Tom20 and Tom70 

with N-terminal membrane anchors are independent of the SAM/

Mdm10 machinery. Moreover, several more α-helical outer 

membrane proteins analyzed did not depend on an active SAM 

complex for import into the outer membrane. Only the sub-

units of the TOM complex with a C-terminal membrane anchor 

require the help of Sam37 and Mdm10.

Why does the early step of the membrane insertion of 

Tom22 depend on the SAM complex, whereas the simple tail-

anchored proteins Tom5, Tom6, and Tom7 can be membrane 

inserted in the absence of a functional SAM complex? Rodriguez-

Cousiño et al. (1998) and Nakamura et al. (2004) showed 

that Tom22 is not simply inserted into the outer membrane by a 

C-terminal membrane anchor but contains several distinct im-

port elements, which are separated at the level of its primary 

structure: a segment in the cytosolic domain, the transmembrane 

α helix, and a segment in the intermembrane space domain. 

The cytosolic segment interacted with the other import ele-

ments, suggesting that Tom22 is not simply inserted as a linear 

polypeptide chain but is targeted in a hairpin structure. The in-

volvement of more than one segment of a polypeptide chain in 

membrane insertion is a hallmark of β-barrel proteins, and the 

SAM complex is thought to provide a scaffold for this insertion 

Figure 8. Assembly of Tom5, Tom6, and Tom7 is dependent on Sam37. (A) 35S-labeled Tom5 (lanes 1–6), Tom6 (lanes 7–12), and Tom7 (lanes 13–18) 
precursors were imported into isolated mitochondria from wild-type (WT) and sam37∆ yeast cells for the indicated times. Reisolated mitochondria were 
lysed in digitonin-containing buffer and separated by blue native electrophoresis, and radiolabeled proteins were detected by digital autoradiography. 
(B) 35S-labeled Tom5 (lanes 1–6), Tom6 (lanes 7–12), and Tom7 (lanes 13–18) precursors were imported into isolated mitochondria from wild-type and 
sam37∆ yeast cells for the indicated times. The reisolated mitochondria were resuspended in 0.1 M Na2CO3, pH 11.5, and incubated on ice for 30 min. 
Membrane sheets were isolated by ultracentrifugation, solubilized in laemmli buffer, and separated by Tris-tricine gel electrophoresis. (C) Growth of wild-
type yeast, mdm10∆, and mdm10∆ sam37∆ deletion strains on YPD at 24, 30, and 37°C. (D) 50 μg mitochondria from wild-type, mdm10∆, and 
mdm10∆ sam37∆ yeast cells were solubilized in digitonin-containing buffer, separated by blue native electrophoresis, and subsequently analyzed by 
 immunoblotting with antibodies directed against Tom5. Arrowheads indicate intermediate complexes.
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process at the protein–lipid interphase (Gentle et al., 2004; 

Pfanner et al., 2004; Gentle et al., 2005; Habib et al., 2005; 

Paschen et al., 2005; for review see Ryan, 2004). The SAM mu-

tants used in this study did not completely block but reduced the 

effi ciency of the membrane insertion of Tom22, which is in 

agreement with the view that SAM may function as a scaffold 

that facilitates the insertion process of partially folded precursor 

proteins. As β-barrel precursors apparently contain a consider-

able amount of partially folded elements (Kleinschmidt and 

Tamm, 1996; Eppens et al., 1997; Rapaport and Neupert, 1999), 

it is conceivable that their membrane insertion shows a strict 

dependence on a functional SAM complex.

Irrespective of these speculations, the fi ndings presented 

here clearly extend the substrate spectrum of the mitochondrial 

SAM complex to several α-helical proteins. We conclude that the 

SAM complex is essential for the biogenesis of β-barrel proteins 

but, in addition, facilitates the biogenesis of α-helical TOM pro-

teins that contain a membrane anchor in their C-terminal portion.

Materials and methods
Isolation of mitochondria and in vitro protein import
S. cerevisiae were grown on YPG medium (1% [wt/vol] yeast extract, 2% 
[wt/vol] bactopeptone, and 3% [wt/vol] glycerol). The strains used were 
described previously (Dietmeier et al., 1997; Model et al., 2001; Kozjak 
et al., 2003; Wiedemann et al., 2003; Milenkovic et al., 2004). The full 
open reading of MDM10 was disrupted in YPH499 and sam37∆ yeast 
cells with a kanamycin (kanMX4) cassette. Mitochondria were isolated by 
differential centrifugation and adjusted to a protein concentration of 10 
mg/ml in SEM buffer (250 mM sucrose, 1 mM EDTA, and 10 mM MOPS-
KOH, pH 7.2) and stored in aliquots at −80°C. Radiolabeled precursor 
proteins were generated by in vitro transcription/translation in the pres-
ence of [35S]methionine using rabbit reticulocyte lysate (GE Healthcare; 
Stojanovski et al., 2007). Mitochondria from temperature-sensitive mutants 
and the corresponding wild-type mitochondria in import buffer (3% [wt/vol] 
fatty acid–free BSA, 250 mM sucrose, 80 mM KCl, 5 mM MgCl2, 5 mM 
methionine, 2 mM KH2PO4, and 10 mM MOPS-KOH, pH 7.2) were pre-
incubated at 37°C for 15 min. The samples were transferred to 25°C for 
2 min, and 4 mM ATP, 2 mM NADH, 100 μg/ml creatine kinase, and 5 mM 
creatine phosphate were added. Mitochondria not requiring an initial heat 
shock were added to import buffer supplemented with an energy-regenerating 
system (4 mM ATP, 2 mM NADH, 100 μg/ml creatine kinase, and 5 mM 
creatine phosphate) and were preincubated at 25°C for 2 min. The import 
was initiated by the addition of reticulocyte lysate (5–10% [vol/vol] of 
import reaction). After the indicated times, mitochondria were isolated by 
centrifugation and washed in SEM buffer. Samples to be treated for alkaline 
extraction were resuspended in freshly prepared 0.1 M Na2CO3 and were 
incubated on ice for 30 min. Membranes were isolated by centrifugation 
at 100,000 g for 1 h at 4°C and subsequently solubilized in laemmli buffer 
and separated by Tris-tricine PAGE.

Blue native electrophoresis
Mitochondrial pellets (50 μg of protein) were resuspended in 45 μl of ice-
cold digitonin-containing buffer (0.5–1% digitonin, 20 mM Tris-Cl, pH 7.4, 
0.1 mM EDTA, 50 mM NaCl, and 10% [wt/vol] glycerol) and were incu-
bated on ice for 10–15 min (Stojanovski et al., 2007). Samples were clari-
fi ed by centrifugation at 12,000 g for 15 min at 4°C, and 5 μl of sample 
buffer (5% [wt/vol] Coomassie brilliant blue G-250, 100 mM Bis-Tris, 
pH 7.0, and 500 mM ε-amino-n-caproic acid) was added to the clarifi ed su-
pernatant (Meisinger et al., 2001). Samples were separated on a 4–16% 
polyacrylamide gradient gel at 4°C. The mobility of molecular weight mark-
ers was determined on parallel lanes/gels run under identical conditions. 
The radiolabeled proteins were detected by digital autoradiography.

Miscellaneous
Western transfers were performed on polyvinylidene difl uoride membranes, 
and immunodecoration was performed according to standard techniques. 
Enhanced chemiluminescence was used for detection (GE Healthcare).

We thank Drs. N. Wiedemann, T. Becker, and A. Chacinska for discussion.
This work was supported by the Deutsche Forschungsgemeinschaft, 

Sonderforschungsbereich 388 and 746, Gottfried Wilhelm Leibniz Program, 
Max Planck Research Award, Bundesministerium für Bildung und Forschung, 
and the Fonds der Chemischen Industrie. D. Stojanovski and V. Kozjak-Pavlovic 
are recipients of Alexander von Humboldt research fellowships.

Submitted: 7 June 2007
Accepted: 1 November 2007

References
Ahting, U., T. Waizenegger, W. Neupert, and D. Rapaport. 2005. Signal-anchored 

proteins follow a unique insertion pathway into the outer membrane of 
mitochondria. J. Biol. Chem. 280:48–53.

Allen, R., B. Egan, K. Gabriel, T. Beilharz, and T. Lithgow. 2002. A conserved 
proline residue is present in the transmembrane-spanning domain of 
Tom7 and other tail-anchored protein subunits of the TOM translocase. 
FEBS Lett. 514:347–350.

Bos, M.P., and J. Tommassen. 2004. Biogenesis of the Gram-negative bacterial 
outer membrane. Curr. Opin. Microbiol. 7:610–616.

Burri, L., K. Vascotto, I.E. Gentle, N.C. Chan, T. Beilharz, D.I. Stapleton, L. 
Ramage, and T. Lithgow. 2006. Integral membrane proteins in the 
mitochondrial outer membrane of Saccharomyces cerevisiae. FEBS J. 
273:1507–1515.

Cao, W., and M.G. Douglas. 1995. Biogenesis of ISP6, a small carboxy-terminal 
anchored protein of the receptor complex of the mitochondrial outer 
membrane. J. Biol. Chem. 270:5674–5679.

Coonrod, E.M., M.A. Karren, and J.M. Shaw. 2007. Ugo1p is a multipass trans-
membrane protein with a single carrier domain required for mitochondrial 
fusion. Traffi c. 8:500–511.

Dembowski, M., K.P. Künkele, F.E. Nargang, W. Neupert, and D. Rapaport. 
2001. Assembly of Tom6 and Tom7 into the TOM core complex of 
Neurospora crassa. J. Biol. Chem. 276:17679–17685.

Dietmeier, K., A. Hönlinger, U. Bömer, P.J.T. Dekker, C. Eckerskorn, F. 
Lottspeich, M. Kübrich, and N. Pfanner. 1997. Tom5 functionally links 
mitochondrial preprotein receptors to the general import pore. Nature. 
388:195–200.

Dolezal, P., V. Likic, J. Tachezy, and T. Lithgow. 2006. Evolution of the molecular 
machines for protein import into mitochondria. Science. 313:314–318.

Egan, B., T. Beilharz, R. George, S. Isenmann, S. Gratzer, B. Wattenberg, and 
T. Lithgow. 1999. Targeting of tail-anchored proteins to yeast mitochondria 
in vivo. FEBS Lett. 451:243–248.

Endo, T., H. Yamamoto, and M. Esaki. 2003. Functional cooperation and sepa-
ration of translocators in protein import into mitochondria, the double-
membrane bounded organelles. J. Cell Sci. 116:3259–3267.

Eppens, E.F., N. Nouwen, and J. Tommassen. 1997. Folding of a bacterial outer 
membrane protein during passage through the periplasm. EMBO J. 
16:4295–4301.

Frederick, R.L., J.M. McCaffery, K.W. Cunningham, K. Okamoto, and J.M. 
Shaw. 2004. Yeast Miro GTPase, Gem1p, regulates mitochondrial mor-
phology via a novel pathway. J. Cell Biol. 167:87–98.

Fujiki, Y., A.L. Hubbard, S. Fowler, and P.B. Lazarow. 1982. Isolation of intra-
cellular membranes by means of sodium carbonate treatment: application 
to endoplasmic reticulum. J. Cell Biol. 93:97–102.

Gabriel, K., B. Egan, and T. Lithgow. 2003. Tom40, the import channel of the 
mitochondrial outer membrane, plays an active role in sorting imported 
proteins. EMBO J. 22:2380–2386.

Gentle, I., K. Gabriel, P. Beech, R. Waller, and T. Lithgow. 2004. The Omp85 
family of proteins is essential for outer membrane biogenesis in mito-
chondria and bacteria. J. Cell Biol. 164:19–24.

Gentle, I.E., L. Burri, and T. Lithgow. 2005. Molecular architecture and function 
of the Omp85 family of proteins. Mol. Microbiol. 58:1216–1225.

Gratzer, S., T. Lithgow, R.E. Bauer, E. Lamping, F. Paltauf, S.D. Kohlwein, V. 
Haucke, T. Junne, G. Schatz, and M. Horst. 1995. Mas37p, a novel recep-
tor subunit for protein import into mitochondria. J. Cell Biol. 129:25–34.

Habib, S.J., A. Vasiljev, W. Neupert, and D. Rapaport. 2003. Multiple functions 
of tail-anchor domains of mitochondrial outer membrane proteins. FEBS 
Lett. 555:511–515.

Habib, S.J., T. Waizenegger, M. Lech, W. Neupert, and D. Rapaport. 2005. 
Assembly of the TOB complex of mitochondria. J. Biol. Chem. 
280:6434–6440.

Hermann, G.J., J.W. Thatcher, J.P. Mills, K.G. Hales, M.T. Fuller, J. Nunnari, 
and J.M. Shaw. 1998. Mitochondrial fusion in yeast requires the trans-
membrane GTPase Fzo1p. J. Cell Biol. 143:359–373.

 on M
arch 20, 2013

jcb.rupress.org
D

ow
nloaded from

 
Published November 26, 2007

http://jcb.rupress.org/


JCB • VOLUME 179 • NUMBER 5 • 2007 892

Hill, K., K. Model, M.T. Ryan, K. Dietmeier, F. Martin, R. Wagner, and N. 
Pfanner. 1998. Tom40 forms the hydrophilic channel of the mitochondrial 
import pore for preproteins. Nature. 395:516–521.

Hoogenraad, N.J., L.A. Ward, and M.T. Ryan. 2002. Import and assembly of 
proteins into mitochondria of mammalian cells. Biochim. Biophys. Acta. 
1592:97–105.

Hoppins, S.C., and F.E. Nargang. 2004. The Tim8-Tim13 complex of Neurospora 
crassa functions in the assembly of proteins into both mitochondrial 
membranes. J. Biol. Chem. 279:12396–12405.

Hoppins, S.C., N.E. Go, A. Klein, S. Schmitt, W. Neupert, D. Rapaport, and 
F.E. Nargang. 2007. Alternative splicing gives rise to different isoforms 
of the Neurospora crassa Tob55 protein that vary in their ability to in-
sert β-barrel proteins into the outer mitochondrial membrane. Genetics. 
177:137–149.

Horie, C., H. Suzuki, M. Sakaguchi, and K. Mihara. 2003. Targeting and assem-
bly of mitochondrial tail-anchored protein Tom5 to the TOM complex 
depend on a signal distinct from that of tail anchored proteins dispersed 
in the membrane. J. Biol. Chem. 278:41462–41471.

Humphries, A.D., I.C. Streimann, D. Stojanovski, A.J. Johnston, M. Yano, N.J. 
Hoogenraad, and M.T. Ryan. 2005. Dissection of the mitochondrial import 
and assembly pathway for human Tom40. J. Biol. Chem. 280:11535–11543.

Ishikawa, D., H. Yamamoto, Y. Tamura, K. Moritoh, and T. Endo. 2004. Two 
novel proteins in the mitochondrial outer membrane mediate β-barrel 
protein assembly. J. Cell Biol. 166:621–627.

Jensen, R.E., and A.E. Johnson. 2001. Opening the door to mitochondrial protein 
import. Nat. Struct. Biol. 8:1008–1010.

Kanaji, S., J. Iwahashi, Y. Kida, M. Sakaguchi, and K. Mihara. 2000. 
Characterization of the signal that directs Tom20 to the mitochondrial 
outer membrane. J. Cell Biol. 151:277–288.

Keil, P., and N. Pfanner. 1993. Insertion of MOM22 into the mitochondrial outer 
membrane strictly depends on surface receptors. FEBS Lett. 321:197–200.

Kleinschmidt, J.H., and L.K. Tamm. 1996. Folding intermediates of a β-barrel 
membrane protein: kinetic evidence for a multi-step membrane insertion 
mechanism. Biochemistry. 35:12993–13000.

Koehler, C.M. 2004. New developments in mitochondrial assembly. Annu. Rev. 
Cell Dev. Biol. 20:309–335.

Kozjak, V., N. Wiedemann, D. Milenkovic, C. Lohaus, H.E. Meyer, B. Guiard, 
C. Meisinger, and N. Pfanner. 2003. An essential role of Sam50 in the 
protein sorting and assembly machinery of the mitochondrial outer mem-
brane. J. Biol. Chem. 278:48520–48523.

Kozjak-Pavlovic, V., K. Ross, N. Benlasfer, S. Kimming, A. Karlas, and T. 
Rudel. 2007. Conserved roles of Sam50 and metaxins in VDAC biogen-
esis. EMBO Rep. 8:576–582.

Meisinger, C., M.T. Ryan, K. Hill, K. Model, J.H. Lim, A. Sickmann, H. Müller, 
H.E. Meyer, R. Wagner, and N. Pfanner. 2001. Protein import channel of 
the outer mitochondrial membrane: a highly stable Tom40-Tom22 core 
structure differentially interacts with preproteins, small Tom proteins, and 
import receptors. Mol. Cell. Biol. 21:2337–2348.

Meisinger, C., M. Rissler, A. Chacinska, D. Milenkovic, V. Kozjak, B. Schönfi sch, 
C. Lohaus, H.E. Meyer, M.P. Yaffe, B. Guiard, et al. 2004. The mito-
chondrial morphology protein Mdm10 functions in assembly of the pre-
protein translocase of the outer membrane. Dev. Cell. 7:61–71.

Meisinger, C., N. Wiedemann, M. Rissler, A. Strub, D. Milenkovic, B. Schönfi sch, 
H. Müller, V. Kozjak, and N. Pfanner. 2006. Mitochondrial protein sort-
ing: differentiation of β-barrel assembly by Tom7-mediated segregation 
of Mdm10. J. Biol. Chem. 281:22819–22826.

Meisinger, C., S. Pfannschmidt, M. Rissler, D. Milenkovic, T. Becker, D. 
Stojanovski, M.J. Young, R.E. Jensen, A. Chacinska, B. Guiard, et al. 
2007. The morphology proteins Mdm12/Mmm1 function in the major 
β-barrel assembly pathway of mitochonria. EMBO J. 26:2229–2239.

Milenkovic, D., V. Kozjak, N. Wiedemann, C. Lohaus, H.E. Meyer, B. Guiard, 
N. Pfanner, and C. Meisinger. 2004. Sam35 of the mitochondrial protein 
sorting and assembly machinery is a peripheral outer membrane protein 
essential for cell viability. J. Biol. Chem. 279:22781–22785.

Model, K., C. Meisinger, T. Prinz, N. Wiedemann, K.N. Truscott, N. Pfanner, and 
M.T. Ryan. 2001. Multistep assembly of the protein import channel of the 
mitochondrial outer membrane. Nat. Struct. Biol. 8:361–370.

Model, K., T. Prinz, T. Ruiz, M. Radermacher, T. Krimmer, W. Kühlbrandt, N. 
Pfanner, and C. Meisinger. 2002. Protein translocase of the outer mito-
chondrial membrane: role of import receptors in the structural organiza-
tion of the TOM complex. J. Mol. Biol. 316:657–666.

Mozdy, A.D., J.M. McCaffery, and J.M. Shaw. 2000. Dnm1p GTPase-mediated 
mitochondrial fi ssion is a multi-step process requiring the novel integral 
membrane protein Fis1p. J. Cell Biol. 151:367–380.

Nakamura, Y., H. Suzuki, M. Sakaguchi, and K. Mihara. 2004. Targeting and as-
sembly of rat mitochondrial translocase of outer membrane 22 (TOM22) 
into the TOM complex. J. Biol. Chem. 279:21223–21232.

Neupert, W., and J.M. Hermann. 2007. Translocation of proteins into mitochon-
dria. Annu. Rev. Biochem. 76:723–749.

Oka, T., and K. Mihara. 2005. A railroad switch in mitochondrial protein import. 
Mol. Cell. 18:145–146.

Paschen, S.A., T. Waizenegger, T. Stan, M. Preuss, M. Cyrklaff, K. Hell, D. 
Rapaport, and W. Neupert. 2003. Evolutionary conservation of biogenesis 
of β-barrel membrane proteins. Nature. 426:862–866.

Paschen, S.A., W. Neupert, and D. Rapaport. 2005. Biogenesis of β-barrel mem-
brane proteins of mitochondria. Trends Biochem. Sci. 30:575–582.

Pfanner, N., N. Wiedemann, C. Meisinger, and T. Lithgow. 2004. Assembling the 
mitochondrial outer membrane. Nat. Struct. Mol. Biol. 11:1044–1048.

Prokisch, H., C. Scharfe, D.G. Camp, W. Xiao, L. David, C. Andreoli, M.E. 
Monroe, R.J. Moore, M.A. Gritsenko, C. Kozany, et al. 2004. Integrative 
analysis of the mitochondrial proteome in yeast. PLoS Biol. 2:e160.

Rapaport, D. 2003. Finding the right organelle. Targeting signals in mitochondrial 
outer-membrane proteins. EMBO Rep. 4:948–952.

Rapaport, D. 2005. How does the TOM complex mediate insertion of pre-
cursor proteins into the mitochondrial outer membrane? J. Cell Biol. 
171:419–423.

Rapaport, D., and W. Neupert. 1999. Biogenesis of Tom40, core component of 
the TOM core complex of mitochondria. J. Cell Biol. 146:321–331.

Rapaport, D., M. Brunner, W. Neupert, and B. Westermann. 1998. Fzo1p is a 
mitochondrial outer membrane protein essential for the biogenesis of 
functional mitochondria in Saccharomyces cerevisiae. J. Biol. Chem. 
273:20150–20155.

Rapaport, D., R.D. Taylor, M. Käser, T. Langer, W. Neupert, and F.E. Nargang. 
2001. Structural requirements of Tom40 for assembly into preexisting 
complexes of mitochondria. Mol. Biol. Cell. 12:1189–1198.

Rehling, P., K. Bradner, and N. Pfanner. 2004. Mitochondrial import and the 
twin-pore translocase. Nat. Rev. Mol. Cell Biol. 5:519–530.

Reinders, J., R.P. Zahedi, N. Pfanner, C. Meisinger, and A. Sickmann. 2006. Toward 
the complete yeast mitochondrial proteome: multidimensional separation 
techniques for mitochondrial proteomics. J. Proteome Res. 5:1543–1554.

Rodriguez-Cousiño, N., F.E. Nargang, R. Baardman, W. Neupert, R. Lill, 
and D.A. Court. 1998. An import signal in the cytosolic domain of the 
Neurospora mitochondrial outer membrane protein TOM22. J. Biol. Chem. 
273:11527–11532.

Ruiz, N., D. Kahne, and T.J. Silhavy. 2006. Advances in understanding outer-
membrane biogenesis. Nat. Rev. Microbiol. 4:57–66.

Ryan, M.T. 2004. Chaperones: inserting β-barrels into membranes. Curr. Biol. 
14:R207–R209.

Schleiff, E., and J. Soll. 2005. Membrane protein insertion: mixing eukaryotic 
and prokaryotic concepts. EMBO Rep. 6:1023–1027.

Schmitt, S., H. Prokisch, T. Schlunck, D.G. Camp, U. Ahting, T. Waizenegger, 
C. Scharfe, T. Meitinger, A. Imhof, W. Neupert, et al. 2006. Proteome 
analysis of mitochondrial outer membrane from Neurospora crassa. 
Proteomics. 6:72–80.

Schneider, H., T. Söllner, K. Dietmeier, C. Eckerskorn, F. Lottspeich, B. Trülzsch, 
W. Neupert, and N. Pfanner. 1991. Targeting the master receptor MOM19 
to mitochondria. Science. 254:1659–1662.

Schulz, G.E. 2002. The structure of bacterial outer membrane proteins. Biochim. 
Biophys. Acta. 1565:308–317.

Sesaki, H., and R.E. Jensen. 2001. UGO1 encodes an outer membrane protein 
required for mitochondrial fusion. J. Cell Biol. 152:1123–1134.

Sickmann, A., J. Reinders, Y. Wagner, C. Joppich, R. Zahedi, H.E. Meyer, B. 
Schönfi sch, I. Perschil, A. Chacinska, B. Guiard, et al. 2003. The pro-
teome of Saccharomyces cerevisiae mitochondria. Proc. Natl. Acad. Sci. 
USA. 100:13207–13212.

Stojanovski, D., N. Pfanner, and N. Wiedemann. 2007. Import of proteins into 
mitochondria. Methods Cell Biol. 80:783–806.

Tieu, Q., and J. Nunnari. 2000. Mdv1p is a WD repeat protein that interacts with 
the dynamin-related GTPase, Dnm1p, to trigger mitochondrial division. 
J. Cell Biol. 151:353–366.

Voulhoux, R., M.P. Bos, J. Geurtsen, M. Mols, and J. Tommassen. 2003. Role of 
a highly conserved bacterial protein in outer membrane protein assembly. 
Science. 299:262–265.

Waizenegger, T., T. Stan, W. Neupert, and D. Rapaport. 2003. Signal-anchor do-
mains of proteins of the outer membrane of mitochondria. J. Biol. Chem. 
278:42064–42071.

Waizenegger, T., S.J. Habib, M. Lech, D. Mokranjac, S.A. Paschen, K. Hell, W. 
Neupert, and D. Rapaport. 2004. Tob38, a novel essential component in the 
biogenesis of β-barrel proteins of mitochondria. EMBO Rep. 5:704–709.

Wiedemann, N., N. Pfanner, and M.T. Ryan. 2001. The three modules of the 
ADP/ATP carrier cooperate in receptor recruitment and translocation into 
mitochondria. EMBO J. 20:951–960.

 on M
arch 20, 2013

jcb.rupress.org
D

ow
nloaded from

 
Published November 26, 2007

http://jcb.rupress.org/


MITOCHONDRIAL OUTER MEMBRANE BIOGENESIS • STOJANOVSKI ET AL. 893

Wiedemann, N., V. Kozjak, A. Chacinska, B. Schönfi sch, S. Rospert, M.T. Ryan, 
N. Pfanner, and C. Meisinger. 2003. Machinery for protein sorting and 
assembly in the mitochondrial outer membrane. Nature. 424:565–571.

Wiedemann, N., K.N. Truscott, S. Pfannschmidt, B. Guiard, C. Meisinger, and 
N. Pfanner. 2004. Biogenesis of the protein import channel Tom40 of 
the mitochondrial outer membrane: intermembrane space components 
are involved in an early stage of the assembly pathway. J. Biol. Chem. 
279:18188–18194.

Yaffe, M.P., R.E. Jensen, and E.C. Guido. 1989. The major 45-kDa protein of the 
yeast mitochondrial outer membrane is not essential for cell growth or 
mitochondrial function. J. Biol. Chem. 264:21091–21096.

Young, J.C., N.J. Hoogenraad, and F.U. Hartl. 2003. Molecular chaperones 
Hsp90 and Hsp70 deliver preproteins to the mitochondrial import recep-
tor Tom70. Cell. 112:41–50.

Zahedi, R.P., A. Sickmann, A.M. Boehm, C. Winkler, N. Zufall, B. Schönfi sch, 
B. Guiard, N. Pfanner, and C. Meisinger. 2006. Proteomic analysis of the 
yeast mitochondrial outer membrane reveals accumulation of a subclass 
of preproteins. Mol. Biol. Cell. 17:1436–1450.

 on M
arch 20, 2013

jcb.rupress.org
D

ow
nloaded from

 
Published November 26, 2007

http://jcb.rupress.org/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /UseDeviceIndependentColor
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue true
  /ColorSettingsFile (U.S. Prepress Defaults)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 299
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 299
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


